Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2114619119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320047

RESUMO

SignificanceMicrobes colonizing the infant gut during the first year(s) of life play an important role in immune system development. We show that after birth the (nearly) sterile gut is rapidly colonized by bacteria and their viruses (phages), which often show a strong cooccurrence. Most viruses infecting the infant do not cause clinical signs and their numbers strongly increase after day-care entrance. The infant diet is clearly reflected by identification of plant-infecting viruses, whereas fungi and parasites are not part of a stable gut microbiota. These temporal high-resolution baseline data about the gut colonization process will be valuable for further investigations of pathogenic viruses, dynamics between phages and their bacterial host, as well as studies investigating infants with a disturbed microbiota.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Vírus , Bactérias , Humanos , Lactente
2.
Nutrients ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215453

RESUMO

There is growing evidence that gut dysbiosis contributes to the progression of chronic kidney disease (CKD) owing to several mechanisms, including microbiota-derived uremic toxins, diet and immune-mediated factors. The aim of this study was to investigate the effect of a ß-glucan prebiotic on kidney function, uremic toxins and the gut microbiome in stage 3 to 5 CKD participants. Fifty-nine participants were randomized to either the ß-glucan prebiotic intervention group (n = 30) or the control group (n = 29). The primary outcomes were to assess kidney function (urea, creatinine and glomerular filtration rate), plasma levels of total and free levels of uremic toxins (p-cresyl sulfate (pCS), indoxyl-sulfate (IxS), p-cresyl glucuronide (pCG) and indoxyl 3-acetic acid (IAA) and gut microbiota using 16S rRNA sequencing at baseline, week 8 and week 14. The intervention group (age 40.6 ± 11.4 y) and the control group (age 41.3 ± 12.0 y) did not differ in age or any other socio-demographic variables at baseline. There were no significant changes in kidney function over 14 weeks. There was a significant reduction in uremic toxin levels at different time points, in free IxS at 8 weeks (p = 0.003) and 14 weeks (p < 0.001), free pCS (p = 0.006) at 14 weeks and total and free pCG (p < 0.001, p < 0.001, respectively) and at 14 weeks. There were no differences in relative abundances of genera between groups. Enterotyping revealed that the population consisted of only two of the four enterotypes: Bacteroides 2 and Prevotella. The redundancy analysis showed a few factors significantly affected the gut microbiome: these included triglyceride levels (p < 0.001), body mass index (p = 0.002), high- density lipoprotein (p < 0.001) and the prebiotic intervention (p = 0.002). The ß-glucan prebiotic significantly altered uremic toxin levels of intestinal origin and favorably affected the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Adulto , Glucanos/farmacologia , Humanos , Rim , Pessoa de Meia-Idade , Prebióticos , RNA Ribossômico 16S , Toxinas Urêmicas
3.
mBio ; 12(6): e0185721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903050

RESUMO

Disturbances in the primary colonization of the infant gut can result in lifelong consequences and have been associated with a range of host conditions. Although early-life factors have been shown to affect infant gut microbiota development, our current understanding of human gut colonization in early life remains limited. To gain more insights into the unique dynamics of this rapidly evolving ecosystem, we investigated the microbiota over the first year of life in eight densely sampled infants (n = 303 total samples). To evaluate the gut microbiota maturation transition toward an adult configuration, we compared the microbiome composition of the infants to that of the Flemish Gut Flora Project (FGFP) population (n = 1,106). We observed the infant gut microbiota to mature through three distinct, conserved stages of ecosystem development. Across these successional gut microbiota maturation stages, the genus predominance was observed to shift from Escherichia over Bifidobacterium to Bacteroides. Both disease and antibiotic treatment were observed to be associated occasionally with gut microbiota maturation stage regression, a transient setback in microbiota maturation dynamics. Although the studied microbiota trajectories evolved to more adult-like constellations, microbiome community typing against the background of the FGFP cohort clustered all infant samples within the (in adults) potentially dysbiotic Bacteroides 2 (Bact2) enterotype. We confirmed the similarities between infant gut microbial colonization and adult dysbiosis. Profound knowledge about the primary gut colonization process in infants might provide crucial insights into how the secondary colonization of a dysbiotic adult gut can be redirected. IMPORTANCE After birth, microbial colonization of the infant intestinal tract is important for health later in life. However, this initial process is highly dynamic and influenced by many factors. Studying this process in detail requires a dense longitudinal sampling effort. In the current study, the bacterial microbiota of >300 stool samples was analyzed from 8 healthy infants, suggesting that the infant gut microbial population matures along a path involving distinct microbial constellations and that the timing of these transitions is infant specific and can temporarily retrace upon external events. We also showed that the infant microbial populations show similarities to suboptimal bacterial populations in the guts of adults. These insights are crucial for a better understanding of the dynamics and characteristics of a "healthy gut microbial population" in both infants and adults and might allow the identification of intervention targets in cases of microbial disturbances or disease.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Recém-Nascido/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Estudos de Coortes , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Masculino
4.
Parasit Vectors ; 13(1): 521, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066814

RESUMO

BACKGROUND: Blastocystis is a protist that lives in the intestinal tract of a variety of hosts, including humans. It is still unclear how Blastocystis causes disease, which presents an ongoing challenge for researchers. Despite the controversial findings on the association between Blastocystis and clinical digestive manifestations, there is currently no consensus as to whether this protozoan actually behaves as a pathogen in humans. Furthermore, the relationship between Blastocystis and the intestinal microbiota composition is not yet clear. For that reason, the aim of this study was to identify if colonization by Blastocystis is related to changes in the diversity and relative abundance of bacterial communities, compared with those of Blastocystis-free individuals in a group of Colombian children. METHODS: We took stool samples from 57 school-aged children attending a daycare institution in Popayán (Southwest Colombia). Whole DNA was extracted and examined by 16S-rRNA amplicon-based sequencing. Blastocystis was detected by real time PCR and other intestinal parasites were detected by microscopy. We evaluated if Blastocystis was associated with host variables and the diversity and abundance of microbial communities. RESULTS: The composition of the intestinal bacterial community was not significantly different between Blastocystis-free and Blastocystis-colonized children. Despite this, we observed a higher microbial richness in the intestines of children colonized by Blastocystis, which could, therefore, be considered a benefit to intestinal health. The phylum Firmicutes was the predominant taxonomic unit in both groups analyzed. In Blastocystis-free individuals, there was a higher proportion of Bacteroidetes; similarly, in children colonized by Blastocystis, there was a higher relative abundance of the phylum Proteobacteria; however, no statistically significant differences were found between the comparison groups. CONCLUSIONS: The presence of Blastocystis showed a decrease in Bacteroides, and an increase in the relative abundance of the genus Faecalibacterium. It was also evident that the presence of Blastocystis was unrelated to dysbiosis at the intestinal level; on the contrary, its presence did not show statistically differences in the intestinal microbiota composition. Nevertheless, we believe that Blastocystis plays a role in the ecology of the intestinal microbiota through its interaction with other microbial components.


Assuntos
Infecções por Blastocystis/epidemiologia , Blastocystis/isolamento & purificação , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Blastocystis/genética , Infecções por Blastocystis/parasitologia , Pré-Escolar , Colômbia/epidemiologia , Fezes/microbiologia , Fezes/parasitologia , Feminino , Firmicutes/genética , Humanos , Intestinos/microbiologia , Intestinos/parasitologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA