Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 233(1): 132-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363707

RESUMO

Florivory is an ancient interaction which has rarely been quantified due to a lack of standardized protocols, thus impairing biogeographical and phylogenetic comparisons. We created a global, continuously updated, open-access database comprising 180 species and 64 families to compare floral damage between tropical and temperate plants, to examine the effects of plant traits on floral damage, and to explore the eco-evolutionary dynamics of flower-florivore interactions. Flower damage is widespread across angiosperms, but was two-fold higher in tropical vs temperate species, suggesting stronger fitness impacts in the tropics. Flowers were mostly damaged by chewers, but neither flower color nor symmetry explained differences in florivory. Herbivory and florivory levels were positively correlated within species, even though the richness of the florivore community does not affect florivory levels. We show that florivory impacts plant fitness via multiple pathways and that ignoring this interaction makes it more difficult to obtain a broad understanding of the ecology and evolution of angiosperms. Finally, we propose a standardized protocol for florivory measurements, and identify key research avenues that will help fill persistent knowledge gaps. Florivory is expected to be a central research topic in an epoch characterized by widespread decreases in insect populations that comprise both pollinators and florivores.


Assuntos
Flores , Magnoliopsida , Animais , Herbivoria , Insetos , Filogenia , Polinização
2.
Oecologia ; 196(4): 951-961, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33885980

RESUMO

Fire-suppression is of concern in fire-prone ecosystems because it can result in the loss of endemic species. Suppressing fires also causes a build-up of flammable biomass, increasing the risk of severe fires. Using a Before-After, Control-Impacted design, we assessed the consequences of high-severity fires on Neotropical savanna arboreal ant communities. Over a 9-year period, we sampled the ant fauna of the same trees before and after two severe fires that hit a savanna reserve in Brazil and the trees from an unburned savanna site that served as a temporal control. The ant community associated with the unburned trees was relatively stable, with no significant temporal variation in species richness and only a few species changing in abundance over time. In contrast, we found a strong decline in species richness and marked changes in species composition in the burned trees, with some species becoming more prevalent and many becoming rare or locally extinct. The dissimilarity in species richness and composition was significantly smaller between the two pre-fire surveys than between the pre- and post-fire surveys. Fire-induced changes were much more marked among species with strictly arboreal nesting habits, and therefore more susceptible to the direct effects of fire. The decline of some of the ecologically dominant arboreal ant species may be particularly important, as it opens substantial ecological space for cascading community-wide changes. In particular, severe fires appear to disrupt the typical vertical stratification between the arboreal and ground-dwelling faunas, which might lead to homogenization of the overall ant community.


Assuntos
Formigas , Incêndios , Animais , Ecossistema , Pradaria , Árvores
3.
Proc Biol Sci ; 286(1895): 20182284, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963945

RESUMO

Liverworts and mosses are a major component of the epiphyte flora of tropical montane forest ecosystems. Canopy access was used to analyse the distribution and vertical stratification of bryophyte epiphytes within tree crowns at nine forest sites across a 3400 m elevational gradient in Peru, from the Amazonian basin to the high Andes. The stable isotope compositions of bryophyte organic material (13C/12C and 18O/16O) are associated with surface water diffusive limitations and, along with C/N content, provide a generic index for the extent of cloud immersion. From lowland to cloud forest δ13C increased from -33‰ to -27‰, while δ18O increased from 16.3‰ to 18.0‰. Epiphytic bryophyte and associated canopy soil biomass in the cloud immersion zone was estimated at up to 45 t dry mass ha-1, and overall water holding capacity was equivalent to a 20 mm precipitation event. The study emphasizes the importance of diverse bryophyte communities in sequestering carbon in threatened habitats, with stable isotope analysis allowing future elevational shifts in the cloud base associated with changes in climate to be tracked.


Assuntos
Biodiversidade , Biomassa , Briófitas/química , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Altitude , Florestas , Peru
4.
Glob Chang Biol ; 24(2): e592-e602, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29055170

RESUMO

One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order to maintain yields, farmers may be forced to change cultivation practices, the timing of cultivation, or even the type of crops grown. Alternatively, farmers can change the location where crops are cultivated (e.g., to higher elevations) to track suitable climates (in which case the plants will have to grow in different soils), as cultivated plants will otherwise have to tolerate warmer temperatures and possibly face novel enemies. We simulated these two last possible scenarios (for temperature increases of 1.3°C and 2.6°C) in the Peruvian Andes through a field experiment in which several traditionally grown varieties of potato and maize were planted at different elevations (and thus temperatures) using either the local soil or soil translocated from higher elevations. Maize production declined by 21%-29% in response to new soil conditions. The production of maize and potatoes declined by >87% when plants were grown under warmer temperatures, mainly as a result of the greater incidence of novel pests. Crop quality and value also declined under simulated migration and warming scenarios. We estimated that local farmers may experience severe economic losses of up to 2,300 US$ ha-1  yr-1 . These findings reveal that climate change is a real and imminent threat to agriculture and that there is a pressing need to develop effective management strategies to reduce yield losses and prevent food insecurity. Importantly, such strategies should take into account the influences of non-climatic and/or biotic factors (e.g., novel pests) on plant development.


Assuntos
Agricultura , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos , Humanos , Peru
5.
Ecology ; 93(9): 2061-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23094378

RESUMO

Tree growth response across environmental gradients is fundamental to understanding species distributional ecology and forest ecosystem ecology and to predict future ecosystem services. Cross-sectional patterns of ecosystem properties with respect to climatic gradients are often used to predict ecosystem responses to global change. Across sites in the tropics, primary productivity increases with temperature, suggesting that forest ecosystems will become more productive as temperature rises. However, this trend is confounded with a shift in species composition and so may not reflect the response of in situ forests to warming. In this study, we simultaneously studied tree diameter growth across the altitudinal ranges of species within a single genus across a geographically compact temperature gradient, to separate the direct effect of temperature on tree growth from that of species compositional turnover. Using a Bayesian state space modeling framework we combined data from repeated diameter censuses and dendrometer measurements from across a 1700-m altitudinal gradient collected over six years on over 2400 trees in Weinmannia, a dominant and widespread genus of cloud forest trees in the Andes. Within species, growth showed no consistent trend with altitude, but higher-elevation species had lower growth rates than lower-elevation species, suggesting that species turnover is largely responsible for the positive correlation between productivity and temperature in tropical forests. Our results may indicate a significant difference in how low- and high-latitude forests will respond to climate change, since temperate and boreal tree species are consistently observed to have a positive relationship between growth and temperature. If our results hold for other tropical species, a positive response in ecosystem productivity to increasing temperatures in the Andes will depend on the altitudinal migration of tree species. The rapid pace of climate change, and slow observed rates of migration, suggest a slow, or even initially negative response of ecosystem productivity to warming. Finally, this study shows how the observed scale of biological organization can affect conclusions drawn from studies of ecological phenomena across environmental gradients, and calls into question the common practice in tropical ecology of lumping species at higher taxonomic levels.


Assuntos
Ecossistema , Árvores/crescimento & desenvolvimento , Altitude , Clima , Demografia , Peru , Especificidade da Espécie
6.
Ecology ; 102(4): e03301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565639

RESUMO

Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.

7.
Insects ; 10(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064092

RESUMO

Food security and biodiversity conservation are threatened by the emergence and spread of pest and pathogens, and thus there is a current need to develop pest management strategies that are sustainable and friendly to the environment and human health. Here, we performed laboratory and field bioassays to evaluate the insecticidal effects of several concentrations of capsaicinoids and glucosinolates (separately and mixed) on an aphid pest (Aphis cytisorum). The capsaicinoids were extracted from the fruits of Capsicum chinense and glucosinolates from the tubers of native Andean crop Tropaeolum tuberosum. We found that both capsaicinoids and glucosinolates have a biocidal effect on A. cytisorum, acting within a fairly short time. Under laboratory conditions, the toxicity of the compounds increased in relation to their concentrations, causing a high percentage of mortality (83-99%) when the aphids were exposed to dilutions of 10% capsaicinoids, 75-100% glucosinolates, or a mixture of 10% capsaicinoids and 90% glucosinolates. The mortality of aphids sprayed in the field with 5% capsaicinoids, 50% glucosinolates, or with a mixture of 5% capsaicinoids and 45% glucosinolates reached 87-97%. Results obtained from laboratory and field experiments were consistent. Our results suggest the potential use of bioinsecticides based on capsaicinoids and/or glucosinolates as an effective alternative to synthetic pesticides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA