Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Thromb Res ; 213: 91-96, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313235

RESUMO

INTRODUCTION: Hemophilia B (HB) is a hereditary bleeding disorder caused by the genetic variation of the coagulation factor IX (FIX) gene (F9). Several F9 structural abnormalities, including large deletion and/or insertion, have been observed to cause HB development. However, there is limited information available on F9 deep intronic variations. In this study, we report about a novel large deletion/insertion observed in a deep region of F9 intron 1 that causes mRNA splicing abnormalities. PATIENT AND METHODS: The patient was a Japanese male diagnosed with moderate HB (FIX:C = 3.0 IU/dL). The genomic DNA of the patient was isolated from peripheral blood leukocytes. DNA sequences of F9 exons and splice donor/acceptor sites were analyzed via polymerase chain reaction and Sanger sequencing. Variant-affected F9 mRNA aberration and FIX protein production, secretion, and coagulant activity were analyzed by cell-based exon trap and splicing-competent FIX expression vector systems. RESULTS: A 28-bp deletion/476-bp insertion was identified in the F9 intron 1 of a patient with moderate HB. A DNA sequence identical to a part of the inverted HNRNPA1 exon 12 was inserted. Cell-based transcript analysis revealed that this large intronic deletion/insertion disrupted F9 mRNA splicing pattern, resulting in reduction of protein-coding F9 mRNA. CONCLUSION: A novel deep intronic F9 rearrangement was identified in a Japanese patient with moderate HB. Abnormal F9 mRNA splicing pattern due to this deep intronic structural variation resulted in a reduction of protein-coding F9 mRNA, which probably caused the moderate HB phenotype.


Assuntos
Hemofilia A , Hemofilia B , Fator IX/genética , Hemofilia A/genética , Humanos , Íntrons/genética , Masculino , Mutação , RNA Mensageiro/genética
2.
J Thromb Haemost ; 19(4): 920-930, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421272

RESUMO

BACKGROUND: Coagulation factor XI (FXI) is a plasma serine protease zymogen that contributes to hemostasis. However, the mechanism of its secretion remains unclear. OBJECTIVE: To determine the molecular mechanism of FXI secretion by characterizing a novel FXI mutant identified in a FXI-deficient Japanese patient. PATIENT/METHODS: The FXI gene (F11) was analyzed by direct sequencing. Mutant recombinant FXI (rFXI) was overexpressed in HEK293 or COS-7 cells. Western blotting and enzyme-linked immunosorbent assay were performed to examine the FXI extracellular secretion profile. Immunofluorescence microscopy was used to investigate the subcellular localization of the rFXI mutant. RESULTS: We identified a novel homozygous frameshift mutation in F11 [c.1788dupC (p.E597Rfs*65)], resulting in a unique and extended carboxyl-terminal (C-terminal) structure in FXI. Although rFXI-E597Rfs*65 was intracellularly synthesized, its extracellular secretion was markedly reduced. Subcellular localization analysis revealed that rFXI-E597Rfs*65 was abnormally retained in the endoplasmic reticulum (ER). We generated a series of C-terminal-truncated rFXI mutants to further investigate the role of the C-terminal region in FXI secretion. Serial rFXI experiments revealed that a threonine at position 622, the fourth residue from the C-terminus, was essential for secretion. Notably, Thr622 engages in the formation of an α-helix motif, indicating the importance of the C-terminal α-helix in FXI intracellular behavior and secretion. CONCLUSION: FXI E597Rfs*65 results in the pathogenesis of a severe secretory defect resulting from aberrant ER-to-Golgi trafficking caused by the lack of a C-terminal α-helix motif. This study demonstrates the impact of the C-terminal structure, especially the α-helix motif, on FXI secretion.


Assuntos
Deficiência do Fator XI , Fator XI , Fator XI/genética , Fator XI/metabolismo , Deficiência do Fator XI/genética , Células HEK293 , Hemostasia , Humanos , Conformação Proteica em alfa-Hélice
3.
Mol Genet Genomic Med ; 8(9): e1390, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32627361

RESUMO

BACKGROUND: Hemophilia A (HA) is an X-linked recessive bleeding disorder caused by pathogenic variants of the coagulation factor VIII gene (F8). Half of the patients with severe HA have a recurrent inversion in the X chromosome, that is, F8 intron 22 or intron 1 inversion. Here, we characterized an abnormal F8 due to atypical complex X chromosome rearrangements in a Japanese patient with severe HA. METHODS: Recurrent F8 inversions were tested with inverse shifting-PCR. The genomic structure was investigated using PCR-based direct sequencing or quantitative PCR. RESULTS: The proband's X chromosome had a 119.5 kb insertion, a reverse duplex of an extragenic sequence on the F8 telomere region into the F8 intron 1 with two breakpoints. The telomeric breakpoint was a joining from the F8 intron 1 to the inverted FUNDC2 via a two-base microhomology, and the centromeric breakpoint was a recombination between F8 intron 1 homologous sequences. The rearrangement mechanism was suggested as a multi-step rearrangement with template switching such as fork stalling and template switching (FoSTeS)/microhomology-mediated break-induced replication (MMBIR) and/or homologous sequence-associated recombination during a sister chromatid formation. CONCLUSION: We identified the aberrant X chromosome with a split F8 due to a multi-step rearrangement in a patient with severe HA.


Assuntos
Cromátides/genética , Inversão Cromossômica , Cromossomos Humanos X/genética , Hemofilia A/genética , Pontos de Quebra do Cromossomo , Fator XIII/genética , Hemofilia A/patologia , Recombinação Homóloga , Humanos , Lactente , Íntrons , Masculino
4.
Thromb Res ; 179: 95-103, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102861

RESUMO

INTRODUCTION: Hemophilia B is an X-linked recessive bleeding disorder caused by coagulation factor IX (FIX) gene (F9) mutations. Several F9 synonymous mutations have been known to cause hemophilia B; however, the deleterious mechanisms underlying the development of hemophilia B have not been completely understood. To elucidate the molecular pathogenesis causing hemophilia B, we investigated the synonymous F9 mutation: c.87A>G, p.(Thr29=). MATERIALS AND METHODS: The influence of F9 c.87A>G on mRNA splicing was analyzed by exon-trap assay and in silico prediction. We prepared FIX expression vectors using mutant F9 cDNA and transfected HepG2 cells to investigate intracellular transport and extracellular secretion of FIX. Intracellular kinetics of the expressed FIX was examined by treatment with the proteasome inhibitor MG132. RESULTS: Exon-trap analysis revealed that F9 c.87A>G resulted in almost (99.1%) aberrant splicing (r.83_88del). In silico analysis predicted that F9 c.87A>G influenced the splicing pattern by generating an available aberrant 5' splice site. The aberrant F9 mRNA (r.83_88del) was translated to a mutant FIX p.Cys28_Val30delinsPhe with an in-frame mutation at the signal peptide cleavage site. Simultaneously, a small amount (0.9%) of mutant F9 r.87A>G translating into WT FIX p.Thr29 = was also observed. The mutant FIX was abnormally retained in the endoplasmic reticulum (ER) and was not extracellularly secreted. It appeared to be intracellularly degraded via proteasome-dependent degradation machinery. CONCLUSION: F9 c.87A>G was found to cause abnormal mRNA splicing, r.83_88del, and produce the mutant FIX p.Cys28_Val30delinsPhe. The mutant FIX is an abnormal protein with extracellular secretory defects and is intracellularly eliminated via proteasome-dependent ER-associated degradation.


Assuntos
Fator IX/genética , Hemofilia B/genética , Mutação , Processamento Alternativo , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética
5.
Thromb Res ; 178: 159-170, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31030036

RESUMO

BACKGROUND: Congenital antithrombin (AT) deficiency, which arises from various SERPINC1 defects, is an autosomal-dominant thrombophilic disorder associated with a high risk of recurrent venous thromboembolism. PATIENTS/METHODS: We investigated SERPINC1 defects in Japanese patients with congenital AT deficiency who developed venous thromboembolism or had a family history of deep vein thrombosis. We analyzed the full DNA sequences of SERPINC1 exons and exon-intron junctions by PCR-mediated direct sequencing. If no mutation was found, multiplex ligation-dependent probe amplification (MLPA) was conducted for the relative quantification of the copy number of all exons in SERPINC1. If splice-site mutations were detected, mRNA splicing abnormalities were further investigated using an in vitro cell-based exontrap assay. RESULTS: We identified 19 different SERPINC1 abnormalities, including 8 novel mutations, in 21 Japanese patients with AT deficiency. These abnormalities were distributed as follows: 9 missense mutations (42.9%), 3 nonsense mutations (14.3%), 1 splice-site mutation (4.8%), 2 small insertions (9.5%), 2 deletion mutations (9.5%) and 4 large deletions (19.0%). Cases with large deletions of SERPINC1 included Alu-mediated gene rearrangements and non-Alu-mediated complex gene rearrangements; the latter could conceivably be explained using the fork stalling and template switching (FoSTeS) model. CONCLUSIONS: We identified a variety of SERPINC1 defects in Japanese patients with AT deficiency. The SERPINC1 mutations detected in patients with type I AT deficiency included single nucleotide missense or nonsense mutations, small intragenic insertions or deletions, and large genomic structural deletions. Large deletions of SERPINC1 were caused by various recurrent or non-recurrent complex genomic rearrangement mutations.


Assuntos
Deficiência de Antitrombina III/genética , Antitrombina III/genética , Mutação , Adolescente , Adulto , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA