Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nanomedicine ; 19: 22-38, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002932

RESUMO

The coatings application onto medical devices has experienced a continuous growth in the last few years. Medical device coating market is expected to grow at a CAGR of 5.16% to reach USD 10 million by 2023 due to the increasing geriatric population and the growing demand for continuous innovation. Layer-by-Layer (LbL) assembly represents a versatile method to modify the surface properties, in order to control cell interaction and thus enhance biological functions. Furthermore, LbL is environmentally friendly, able to coat all types of surfaces with the creation of homogenous film and to include and control the release of biomolecules/drugs. This feature review provides a critical overview on recent progresses in functionalizing materials by LbL assembly for bone regeneration and disorder treatment. An overview of emerging and visionary opportunities on LbL technologies and further combination with other existing methods used in biomedical field, is also discussed to evidence the new challenges and potential developments in bone regenerative medicine.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Nanoestruturas/química , Sequência de Aminoácidos , Animais , Humanos , Nanoestruturas/ultraestrutura , Peptídeos/química , Cicatrização
2.
Biochim Biophys Acta Gen Subj ; 1861(2): 386-395, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864151

RESUMO

BACKGROUND: The design of efficient nerve conduits able to sustain the axonal outgrowth and its guidance towards appropriate targets is of paramount importance in nerve tissue engineering. METHODS: In this work, we propose the preparation of highly aligned nanocomposite fibers of gelatin/cerium oxide nanoparticles (nanoceria), prepared by electrospinning. Nanoceria are powerful self-regenerative antioxidant nanomaterials, that behave as strong reactive oxygen species scavengers, and among various beneficial effects, they have been proven to inhibit the cell senescence and to promote the neurite sprouting. RESULTS: After a detailed characterization of the developed substrates, they have been tested on neuron-like SH-SY5Y cells, demonstrating strong antioxidant properties and beneficial multi-cue effects in terms of neurite development and alignment. CONCLUSIONS: Obtained findings suggest efficiency of the proposed substrates in providing combined topographical stimuli and antioxidant effects to cultured cells. GENERAL SIGNIFICANCE: Proposed nanocomposite scaffolds represent a promising approach for nerve tissue engineering and regenerative medicine.


Assuntos
Antioxidantes/química , Cério/química , Gelatina/química , Nanocompostos/química , Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Antioxidantes/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Células Cultivadas , Cério/administração & dosagem , Gelatina/administração & dosagem , Humanos , Nanocompostos/administração & dosagem , Nanofibras/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais
3.
Methods ; 99: 28-36, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26361830

RESUMO

Polymeric biomaterials are often used for stimulating nerve regeneration. Among different conduits, poly(lactide acid) - PLA polymer is considered to be a good substrate due to its biocompatibility and resorbable characteristics. This polymer is an aliphatic polyester which has been mostly used in biomedical application. It is an organic compound with low allergenic potential, low toxicity, high biocompatibility and predictable kinetics of degradation. In this study we fabricated and evaluated a PLA microporous hollow fiber as a conduit for its ability to bridge a nerve gap in a mouse sciatic nerve injury model. The PLA conduit was prepared from a polymer solution, throughout extrusion technique. The left sciatic nerve of C57BL/6 mouse was transected and the nerve stumps were placed into a resorbable PLA (PLA group) or a PCL conduit (PCL group), n=5 each group. We have also used another group in which the nerves were repaired by autograft (autograft group, n=5). Motor function was analyzed according to sciatic functional index (SFI). After 56days, the regenerated nerves were processed for light and electron microscopy and morphometric analyses were performed. A quantitative analysis of regenerated nerves showed significant increase in the number of myelinated fibers and blood vessels in animals that received PLA conduit. The PLA group exhibited better overall tissue organization compared to other groups. Presenting well-organized bundles, many regenerating clusters composed of preserved nerve fibers surrounded by layers of compacted perineurium-like cells. Also the SFI revealed a significant improvement in functional recovery. This work suggests that PLA conduits are suitable substrate for cell survival and it provides an effective strategy to be used to support axonal growth becoming a potential alternative to autograft.


Assuntos
Regeneração Nervosa , Poliésteres/química , Nervo Isquiático/fisiopatologia , Alicerces Teciduais/química , Animais , Sobrevivência Celular , Células Cultivadas , Estudos de Avaliação como Assunto , Implantes Experimentais , Masculino , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/terapia , Recuperação de Função Fisiológica , Células de Schwann/fisiologia , Células de Schwann/ultraestrutura
4.
Int J Mol Sci ; 16(6): 12925-42, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26062130

RESUMO

Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction.


Assuntos
Axônios/fisiologia , Gelatina/química , Nanofibras/química , Regeneração Nervosa , Células de Schwann/fisiologia , Animais , Axônios/efeitos dos fármacos , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Gelatina/farmacologia , Regeneração Tecidual Guiada/métodos , Ratos , Células de Schwann/efeitos dos fármacos
5.
Int J Mol Sci ; 16(9): 20492-510, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26343649

RESUMO

Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1-34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3-4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds.


Assuntos
Regeneração Óssea , Ácido Láctico/química , Nanopartículas/química , Hormônio Paratireóideo/administração & dosagem , Ácido Poliglicólico/química , Alicerces Teciduais/química , Calcificação Fisiológica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Liberação Controlada de Fármacos , Gelatina/química , Humanos , Nanopartículas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade
6.
Biofabrication ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121863

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, a leading cause of cancer-related deaths globally. Initial lesions of PDAC develop within the exocrine pancreas' functional units, with tumor progression driven by interactions between PDAC and stromal cells. Effective therapies require anatomically and functionally relevant in vitro human models of the pancreatic cancer microenvironment. We employed tomographic volumetric bioprinting, a novel biofabrication method, to create human fibroblast-laden constructs mimicking the tubuloacinar structures of the exocrine pancreas. Human pancreatic ductal epithelial (HPDE) cells overexpressing the KRAS oncogene (HPDE-KRAS) were seeded in the multiacinar cavity to replicate pathological tissue. HPDE cell growth and organization within the structure were assessed, demonstrating the formation of a thin epithelium covering the acini inner surfaces. Immunofluorescence assays showed significantly higher alpha smooth muscle actin (α-SMA) vs. F-actin expression in fibroblasts co-cultured with cancerous versus wild-type HPDE cells. Additionally, α-SMA expression increased over time and was higher in fibroblasts closer to HPDE cells. Elevated interleukin (IL)-6 levels were quantified in supernatants from co-cultures of stromal and HPDE-KRAS cells. These findings align with inflamed tumor-associated myofibroblast behavior, serving as relevant biomarkers to monitor early disease progression and target drug efficacy. To our knowledge, this is the first demonstration of a 3D bioprinted model of exocrine pancreas that recapitulates its true 3-dimensional microanatomy and shows tumor triggered inflammation. .

7.
Front Bioeng Biotechnol ; 12: 1346660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646009

RESUMO

Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.

8.
Biomater Adv ; 154: 213620, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690344

RESUMO

Alveoli are the functional area of respiratory system where the gaseous exchanges take place at level of the alveolar-capillary barrier. The development of safe and effective therapeutic approaches for treating lung disease is currently limited due to the lack of realistic preclinical models for their testing and validation. In this work, tissue engineering approaches were exploited to develop a biomimetic platform that provide an appropriate mimicking of the extracellular environment and the multicellular architecture of human alveoli. Here, we propose the implementation of two biomimetic in vitro models to reproduce the features of the main anatomic portions of the physiological alveolar-capillary barrier. First, a co-culture barrier model was obtained by integrating an electrospun polycaprolactone-gelatin (PCL-Gel) membrane in a modified transwell insert (PCL-Gel TW) to mimic the alveolar basement membrane (coded as thin model). Alveolar epithelial (A549) and lung microvascular endothelial (HULEC-5a) cells were cultured on the apical and basolateral side of the PCL-Gel membrane, respectively, under physiologic air-liquid interface (ALI) conditions for 7 days. The ALI condition promoted the expression of type I and type II alveolar epithelial cell markers and the secretion of mucus in A549 cells. Increased cell viability and barrier properties in co-cultures of A549 and HULEC-5a compared to mono-cultures revealed the effectiveness of the model to reproduce in vitro physiological-relevant features of the alveolar-capillary barrier. The second portion of the alveolar-capillary barrier was developed implementing a tri-culture model (coded as thick model) including a type I collagen (COLL) hydrogel formulated to host lung fibroblasts (MRC-5). The thick barrier model was implemented by seeding HULEC-5a on the basolateral side of PCL-Gel TW and then pouring sequentially MRC-5-laden COLL hydrogel and A549 cells on the apical side of the electrospun membrane. The thick model was maintained up to 7 days at ALI and immunofluorescence staining of tight and adherent junctions demonstrated the formation of a tight barrier. Lastly, the ability of models to emulate pathological inflammatory conditions was validated by exposing the apical compartment of the PCL-Gel TW to lipopolysaccharide (LPS). The damage of A549 tight junctions, the increase of barrier permeability and IL-6 pro-inflammatory cytokine release was observed after 48 h exposure to LPS.


Assuntos
Biomimética , Lipopolissacarídeos , Humanos , Técnicas de Cocultura , Lipopolissacarídeos/metabolismo , Alvéolos Pulmonares/metabolismo , Hidrogéis
9.
Biomater Sci ; 11(1): 208-224, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36420859

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) mainly develops in the head of the pancreas, within the acino-ductal unit composed of acinar and ductal cells surrounded by pancreatic stellate cells (PSCs). PSCs strongly influence the tumor microenvironment by triggering an intense stromal deposition, which plays a key role in tumor progression and limits drug perfusion. We have developed a microfluidic in vitro model recreating the in vivo tumor-stroma crosstalk to replicate the steps of PDAC evolution towards the establishment of an efficient in vitro platform for innovative therapy validation. The multilayer PDAC-on-chip was designed to culture the PDAC cells and the PSCs embedded in a type I collagen gel in the top and bottom layers, respectively. The presence of a biomimetic nanofibrous membrane in the middle of the chip permits the control of interactions between the two cell lines and the easy analysis of the effects of the crosstalk on cell behavior. First, the PDAC-stromal cell relationship was evaluated under co-culture conditions on 24-well inserts including the PCL/Gel electrospun membrane. This simplified model shows that human fibroblasts change their morphology and secrete larger amounts of IL-6 cytokines in the presence of tumor cells, confirming the activation of stromal cells under co-culture. Then, the PDAC-on-chip system was validated by demonstrating that human fibroblasts seeded in a 3D collagen matrix in the bottom microchannel also change to a myofibroblast-like shape with increased expression of α-SMA and secrete larger amounts of IL-6 cytokines. This microfluidic system is suitable for the evaluation of drug efficacy and serves as a powerful tool for understanding the early evolution steps of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Interleucina-6 , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Pâncreas/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Pancreáticas
10.
J Mater Chem B ; 10(14): 2384-2429, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35244122

RESUMO

The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered as alternatives to antibiotics due to the increasing number of multidrug-resistant (MDR) bacteria. However, bare AMPs have limited therapeutic potentials due to a low residence time in the blood circulatory system and susceptibility to proteases and an alkaline wound environment. These limitations are the major hurdles for AMPs to succeed as commercial drugs. In contrast, AMP-based materials, for instance, NPs, hydrogels, electrospun fibres, dressings and implants, could overcome these challenges and provide therapeutic efficacies to the conjugated AMPs superior to those of bare AMPs in different disease models. In this review, we discuss the preparation of different compositions of AMP-based materials and their therapeutic potential for the treatment of microbial infections in the brain, eyes, mouth, skin, lungs, and gastrointestinal and urinary tracts. Apart from antimicrobial potential, the applications of AMP-based materials in the regeneration of skin/bone, prevention of implant-associated infections, detection/imaging of bacteria, cancer therapy and gene delivery are discussed in this review. Lastly, we discuss different challenges that hinder the commercialization of AMP-based materials. Overall, this review provides a comprehensive account of the current progress and prospects of AMP-based materials for clinical applications.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana Múltipla
11.
Bioengineering (Basel) ; 8(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668465

RESUMO

Conductive polymers (CPs) have recently been applied in the development of scaffolds for tissue engineering applications in attempt to induce additional cues able to enhance tissue growth. Polyaniline (PANI) is one of the most widely studied CPs, but it requires to be blended with other polymers in order to be processed through conventional technologies. Here, we propose the fabrication of nanofibers based on a polycaprolactone (PCL)-PANI blend obtained using electrospinning technology. An extracellular matrix-like fibrous substrate was obtained showing a good stability in the physiological environment (37 °C in PBS solution up 7 days). However, since the high hydrophobicity of the PCL-PANI mats (133.5 ± 2.2°) could negatively affect the biological response, a treatment with atmospheric plasma was applied on the nanofibrous mats, obtaining a hydrophilic surface (67.1 ± 2°). In vitro tests were performed to confirm the viability and the physiological-like morphology of human foreskin fibroblast (HFF-1) cells cultured on the plasma treated PCL-PANI nanofibrous scaffolds.

12.
J Biomed Mater Res B Appl Biomater ; 108(4): 1176-1185, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31429201

RESUMO

Scaffold pore size plays a fundamental role in the regeneration of new tissue since it has been shown to direct cell activity in situ. It is well known that cellular response changes in relation with pores diameter. Consequently, researchers developed efficient approaches to realize scaffolds with controllable macro-, micro-, and nanoporous architecture. In this context, new strategies aiming at the manufacturing of scaffolds with multiscale pore networks have emerged, in the attempt to mimic the complex hierarchical structures found in living systems. In this review, we aim at providing an overview of the fabrication methods currently adopted to realize scaffolds with controlled, multisized pores highlighting their specific influence on cellular activity.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Teste de Materiais , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Humanos , Porosidade
13.
Polymers (Basel) ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560332

RESUMO

Light processable hydrogels were successfully fabricated by utilizing maize starch as raw material. To render light processability, starch was gelatinized and methacrylated by simple reaction with methacrylic anhydride. The methacrylated starch was then evaluated for its photocuring reactivity and 3D printability by digital light processing (DLP). Hydrogels with good mechanical properties and biocompatibility were obtained by direct curing from aqueous solution containing lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as photo-initiator. The properties of the hydrogels were tunable by simply changing the concentration of starch in water. Photo-rheology showed that the formulations with 10 or 15 wt% starch started curing immediately and reached G' plateau after only 60 s, while it took 90 s for the 5 wt% formulation. The properties of the photocured hydrogels were further characterized by rheology, compressive tests, and swelling experiments. Increasing the starch content from 10 to 15 wt% increased the compressive stiffness from 13 to 20 kPa. This covers the stiffness of different body tissues giving promise for the use of the hydrogels in tissue engineering applications. Good cell viability with human fibroblast cells was confirmed for all three starch hydrogel formulations indicating no negative effects from the methacrylation or photo-crosslinking reaction. Finally, the light processability of methacrylated starch by digital light processing (DLP) 3D printing directly from aqueous solution was successfully demonstrated. Altogether the results are promising for future application of the hydrogels in tissue engineering and as cell carriers.

14.
Polymers (Basel) ; 12(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998365

RESUMO

Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and functionality of the periodontal tissue represents still a great challenge. In this study, a porous poly(ε-caprolactone) (PCL) and Sr-doped nano hydroxyapatite (Sr-nHA) with a multi-layer structure was produced via a single-step additive manufacturing (AM) process, as a potential strategy for hard periodontal tissue regeneration. Physicochemical characterization was conducted in order to evaluate the overall scaffold architecture, topography, as well as porosity with respect to the original CAD model. Furthermore, compressive tests were performed to assess the mechanical properties of the resulting multi-layer structure. Finally, in vitro biological performance, in terms of biocompatibility and osteogenic potential, was evaluated by using human osteosarcoma cells. The manufacturing route used in this work revealed a highly versatile method to fabricate 3D multi-layer scaffolds with porosity levels as well as mechanical properties within the range of dentoalveolar bone tissue. Moreover, the single step process allowed the achievement of an excellent integrity among the different layers of the scaffold. In vitro tests suggested the promising role of the ceramic phase within the polymeric matrix towards bone mineralization processes. Overall, the results of this study demonstrate that the approach undertaken may serve as a platform for future advances in 3D multi-layer and patient-specific strategies that may better address complex periodontal tissue defects.

15.
Nanomaterials (Basel) ; 10(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138290

RESUMO

The high drug loading capacity, cytocompatibility and easy functionalization of ordered mesoporous carbons (OMCs) make them attractive nanocarriers to treat several pathologies. OMCs' efficiency could be further increased by embedding them into a hydrogel phase for an in loco prolonged drug release. In this work, OMCs were embedded into injectable thermosensitive hydrogels. In detail, rod-like (diameter ca. 250 nm, length ca. 700 nm) and spherical (diameter approximately 120 nm) OMCs were synthesized by nanocasting selected templates and loaded with ibuprofen through a melt infiltration method to achieve complete filling of their pores (100% loading yield). In parallel, an amphiphilic Poloxamer® 407-based poly(ether urethane) was synthesized (Mn¯ 72 kDa) and solubilized at 15 and 20% w/v concentration in saline solution to design thermosensitive hydrogels. OMC incorporation into the hydrogels (10 mg/mL concentration) did not negatively affect their gelation potential. Hybrid systems successfully released ibuprofen at a slower rate compared to control gels (gels embedding ibuprofen as such), but with no significant differences between rod-like and spherical OMC-loaded gels. OMCs can thus work as effective drug reservoirs that progressively release their payload over time and also upon encapsulation in a hydrogel phase, thus opening the way to their application to treat many different pathological states (e.g., as topical medications).

16.
Front Bioeng Biotechnol ; 8: 589223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553112

RESUMO

Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration. However, implanted meshes could suffer from poor integration with the surrounding tissues. In this context, the present study describes the preliminary evaluation of a PCL-Gel-based nanofibrous coating as an element to develop a multicomponent hernia mesh device (meshPCL-Gel) that could overcome this limitation thanks to the presence of a nanostructured biomimetic substrate for enhanced cell attachment and new tissue formation. Through the electrospinning technique, a commercial PP hernia mesh was coated with a nanofibrous membrane from a polycaprolactone (PCL) and gelatin (Gel) blend (PCL-Gel). Resulting PCL-Gel nanofibers were homogeneous and defect-free, with an average diameter of 0.15 ± 0.04 µm. The presence of Gel decreased PCL hydrophobicity, so that membranes average water contact angle dropped from 138.9 ± 1.1° (PCL) to 99.9 ± 21.6°, while it slightly influenced mechanical properties, which remained comparable to those of PCL (E = 15.7 ± 2.7 MPa, σ R = 7.7 ± 0.6 ε R = 118.8 ± 13.2%). Hydrolytic and enzymatic degradation was conducted on PCL-Gel up to 28 days, with maximum weight losses around 20 and 40%, respectively. The meshPCL-Gel device was obtained with few simple steps, with no influences on the original mechanical properties of the bare mesh, and good stability under physiological conditions. The biocompatibility of meshPCL-Gel was assessed by culturing BJ human fibroblasts on the device, up to 7 days. After 24 h, cells adhered to the nanofibrous substrate, and after 72 h their metabolic activity was about 70% with respect to control cells. The absence of detectable lactate dehydrogenase in the culture medium indicated that no necrosis induction occurred. Hence, the developed nanostructured coating provided the meshPCL-Gel device with chemical and topographical cues similar to the native extracellular matrix ones, that could be exploited for enhancing the biological response and, consequently, mesh integration, in abdominal wall hernia repair.

17.
Polymers (Basel) ; 12(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722423

RESUMO

The development of new bio-based inks is a stringent request for the expansion of additive manufacturing towards the development of 3D-printed biocompatible hydrogels. Herein, methacrylated carboxymethyl cellulose (M-CMC) is investigated as a bio-based photocurable ink for digital light processing (DLP) 3D printing. CMC is chemically modified using methacrylic anhydride. Successful methacrylation is confirmed by 1H NMR and FTIR spectroscopy. Aqueous formulations based on M-CMC/lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator and M-CMC/Dulbecco's Modified Eagle Medium (DMEM)/LAP show high photoreactivity upon UV irradiation as confirmed by photorheology and FTIR. The same formulations can be easily 3D-printed through a DLP apparatus to produce 3D shaped hydrogels with excellent swelling ability and mechanical properties. Envisaging the application of the hydrogels in the biomedical field, cytotoxicity is also evaluated. The light-induced printing of cellulose-based hydrogels represents a significant step forward in the production of new DLP inks suitable for biomedical applications.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32509740

RESUMO

Injectable therapeutic formulations locally releasing their cargo with tunable kinetics in response to external biochemical/physical cues are gaining interest in the scientific community, with the aim to overcome the cons of traditional administration routes. In this work, we proposed an alternative solution to this challenging goal by combining thermo-sensitive hydrogels based on custom-made amphiphilic poly(ether urethane)s (PEUs) and mesoporous silica nanoparticles coated with a self-immolative polymer sensitive to acid pH (MSN-CS-SIP). By exploiting PEU chemical versatility, Boc-protected amino groups were introduced as PEU building block (PEU-Boc), which were then subjected to a deprotection reaction to expose pendant primary amines along the polymer backbone (PEU-NH2, 3E18 -NH2/gPEU-NH2) with the aim to accelerate system response to external acid pH environment. Then, thermo-sensitive hydrogels were designed (15% w/v) showing fast gelation in physiological conditions (approximately 5 min), while no significant changes in gelation temperature and kinetics were induced by the Boc-deprotection. Conversely, free amines in PEU-NH2 effectively enhanced and accelerated acid pH transfer (pH 5) through hydrogel thickness (PEU-Boc and PEU-NH2 gels covered approximately 42 and 52% of the pH delta between their initial pH and the pH of the surrounding buffer within 30 min incubation, respectively). MSN-CS-SIP carrying a fluorescent cargo as model drug (MSN-CS-SIP-Ru) were then encapsulated within the hydrogels with no significant effects on their thermo-sensitivity. Injectability and in situ gelation at 37°C were demonstrated ex vivo through sub-cutaneous injection in rodents. Moreover, MSN-CS-SIP-Ru-loaded gels turned out to be detectable through the skin by IVIS imaging. Cargo acid pH-triggered delivery from PEU-Boc and PEU-NH2 gels was finally demonstrated through drug release tests in neutral and acid pH environments (in acid pH environment approximately 2-fold higher cargo release). Additionally, acid-triggered payload release from PEU-NH2 gels was significantly higher compared to PEU-Boc systems at 3 and 4 days incubation. The herein designed hybrid injectable formulations could thus represent a significant step forward in the development of multi-stimuli sensitive drug carriers. Indeed, being able to adapt their behavior in response to biochemical cues from the surrounding physio-pathological environment, these formulations can effectively trigger the release of their payload according to therapeutic needs.

19.
Sci Rep ; 9(1): 14630, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601910

RESUMO

Articular cartilage (AC) lacks the ability to self-repair and cell-based approaches, primarily based on using chondrocytes and mesenchymal stem cells (MSCs), are emerging as effective technology to restore cartilage functionality, because cells synergic functionality may support the maintenance of chondrogenic phenotype and promote extracellular matrix regeneration. This work aims to develop a more physiologically representative co-culture system to investigate the influence of MSCs on the activity of chondrocytes. A thermo-sensitive chitosan-based hydrogel, ionically crosslinked with ß-glycerophosphate, is optimised to obtain sol/gel transition at physiological conditions within 5 minutes, high porosity with pores diameter <30 µm, and in vitro mechanical integrity with compressive and equilibrium Young's moduli of 37 kPa and 17 kPa, respectively. Live/dead staining showed that after 1 and 3 days in culture, the encapsulated MSCs into the hydrogels are viable and characterised by round-like morphology. Furthermore chondrocyte spheroids, seeded on top of gels that contained either MSCs or no cells, show that the encapsulated MSCs stimulate chondrocyte activity within a gel co-culture, both in terms of maintaining the coherence of chondrocyte spheroids, leading to a larger quantity of CD44 (by immunofluorescence) and a higher production of collagen and glycosaminoglycans (by histology) compared with the mono-culture.


Assuntos
Cartilagem Articular/fisiologia , Técnicas de Cultura de Células/métodos , Condrócitos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Regeneração/fisiologia , Engenharia Tecidual/métodos , Cartilagem Articular/citologia , Cartilagem Articular/ultraestrutura , Comunicação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Quitosana/química , Técnicas de Cocultura/métodos , Humanos , Hidrogéis/química , Microscopia Eletrônica de Varredura , Esferoides Celulares
20.
Artigo em Inglês | MEDLINE | ID: mdl-31867312

RESUMO

The use of antibiotics has been the cornerstone to prevent bacterial infections; however, the emergency of antibiotic-resistant bacteria is still an open challenge. This work aimed to develop a delivery system for treating soft tissue infections for: (1) reducing the released antimicrobial amount, preventing drug-related systemic side effects; (2) rediscovering the beneficial effects of naturally derived agents; and (3) preserving the substrate functional properties. For the first time, Manuka honey (MH) was proposed as polyelectrolyte within the layer-by-layer assembly. Biomimetic electrospun poly(ε-caprolactone) meshes were treated via layer-by-layer assembly to obtain a multilayered nanocoating, consisting of MH as polyanion and poly-(allylamine-hydrochloride) as polycation. Physicochemical characterization demonstrated the successful nanocoating formation. Different cell lines (human immortalized and primary skin fibroblasts, and primary endothelial cells) confirmed positively the membranes cytocompatibility, while bacterial tests using Gram-negative and Gram-positive bacteria demonstrated that the antimicrobial MH activity was dependent on the concentration used and strains tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA