Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chem Rev ; 122(20): 15717-15766, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820164

RESUMO

Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/metabolismo , Polissacarídeos/química , Glicosiltransferases/metabolismo , Glicoproteínas , Glicosídeo Hidrolases/metabolismo , Proteínas Virais , Açúcares
2.
Proc Natl Acad Sci U S A ; 117(46): 28735-28742, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139538

RESUMO

Paramecium bursaria chlorella virus-1 (PBCV-1) is a large double-stranded DNA (dsDNA) virus that infects the unicellular green alga Chlorella variabilis NC64A. Unlike many other viruses, PBCV-1 encodes most, if not all, of the enzymes involved in the synthesis of the glycans attached to its major capsid protein. Importantly, these glycans differ from those reported from the three domains of life in terms of structure and asparagine location in the sequon of the protein. Previous data collected from 20 PBCV-1 spontaneous mutants (or antigenic variants) suggested that the a064r gene encodes a glycosyltransferase (GT) with three domains, each with a different function. Here, we demonstrate that: domain 1 is a ß-l-rhamnosyltransferase; domain 2 is an α-l-rhamnosyltransferase resembling only bacterial proteins of unknown function, and domain 3 is a methyltransferase that methylates the C-2 hydroxyl group of the terminal α-l-rhamnose (Rha) unit. We also establish that methylation of the C-3 hydroxyl group of the terminal α-l-Rha is achieved by another virus-encoded protein A061L, which requires an O-2 methylated substrate. This study, thus, identifies two of the glycosyltransferase activities involved in the synthesis of the N-glycan of the viral major capsid protein in PBCV-1 and establishes that a single protein A064R possesses the three activities needed to synthetize the 2-OMe-α-l-Rha-(1→2)-ß-l-Rha fragment. Remarkably, this fragment can be attached to any xylose unit.


Assuntos
Proteínas do Capsídeo/metabolismo , Glicosiltransferases/metabolismo , Metiltransferases/metabolismo , Modelos Estruturais , Phycodnaviridae/enzimologia , Escherichia coli , Ramnose/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498914

RESUMO

Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which covers the pathogen surface. L-rhamnose is an important component of TvLG, comprising up to 40% of the monosaccharides. Thus, the inhibition of its production could lead to a severe alteration in the TvLG structure, making the L-rhamnose biosynthetic pathway an attractive pharmacologic target. We report the identification and characterization of the first committed and limiting step of the L-rhamnose biosynthetic pathway, UDP-D-glucose 4,6-dehydratase (UGD, EC 4.2.1.76). The enzyme shows a strong preference for UDP-D-glucose compared to dTDP-D-glucose; we propose that the mechanism underlying the higher affinity for the UDP-bound substrate is mediated by the differential recognition of ribose versus the deoxyribose of the nucleotide moiety. The identification of the enzymes responsible for the following steps of the L-rhamnose pathway (epimerization and reduction) was more elusive. However, sequence analyses suggest that in T. vaginalis L-rhamnose synthesis proceeds through a mechanism different from the typical eukaryotic pathways, displaying intermediate features between the eukaryotic and prokaryotic pathways and involving separate enzymes for the epimerase and reductase activities, as observed in bacteria. Altogether, these results form the basis for a better understanding of the formation of the complex glycan structures on TvLG and the possible use of L-rhamnose biosynthetic enzymes for the development of selective inhibitors.


Assuntos
Ramnose , Trichomonas vaginalis , Feminino , Humanos , Ramnose/química , Vias Biossintéticas , Glucose , Hidroliases/metabolismo , Difosfato de Uridina/metabolismo
4.
Angew Chem Int Ed Engl ; 60(36): 19897-19904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241943

RESUMO

The general perception of viruses is that they are small in terms of size and genome, and that they hijack the host machinery to glycosylate their capsid. Giant viruses subvert all these concepts: their particles are not small, and their genome is more complex than that of some bacteria. Regarding glycosylation, this concept has been already challenged by the finding that Chloroviruses have an autonomous glycosylation machinery that produces oligosaccharides similar in size to those of small viruses (6-12 units), albeit different in structure compared to the viral counterparts. We report herein that Mimivirus possesses a glycocalyx made of two different polysaccharides, now challenging the concept that all viruses coat their capsids with oligosaccharides of discrete size. This discovery contradicts the paradigm that such macromolecules are absent in viruses, blurring the boundaries between giant viruses and the cellular world and opening new avenues in the field of viral glycobiology.


Assuntos
Mimiviridae/metabolismo , Polissacarídeos/biossíntese , Glicosilação , Mimiviridae/química , Polissacarídeos/química
5.
J Biol Chem ; 294(14): 5688-5699, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737276

RESUMO

The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs, but the third GT was identified in this study. We determined the GT functions by comparing the WT glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT gene mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a ß-l-rhamnosyltransferase activity, domain 2 has an α-l-rhamnosyltransferase activity, and domain 3 is a methyltransferase that decorates two positions in the terminal α-l-rhamnose (Rha) unit. The a075l gene encodes a ß-xylosyltransferase that attaches the distal d-xylose (Xyl) unit to the l-fucose (Fuc) that is part of the conserved N-glycan core region. Last, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, α-d-Rha, to the same l-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans.


Assuntos
Antígenos Virais/metabolismo , Proteínas do Capsídeo/metabolismo , Chlorella/metabolismo , Glicosiltransferases/metabolismo , Phycodnaviridae/enzimologia , Polissacarídeos/metabolismo , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Chlorella/genética , Chlorella/virologia , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Phycodnaviridae/genética , Phycodnaviridae/imunologia , Polissacarídeos/genética , Polissacarídeos/imunologia
6.
J Biol Chem ; 292(18): 7385-7394, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314774

RESUMO

The giant virus Mimivirus encodes an autonomous glycosylation system that is thought to be responsible for the formation of complex and unusual glycans composing the fibers surrounding its icosahedral capsid, including the dideoxyhexose viosamine. Previous studies have identified a gene cluster in the virus genome, encoding enzymes involved in nucleotide-sugar production and glycan formation, but the functional characterization of these enzymes and the full identification of the glycans found in viral fibers remain incomplete. Because viosamine is typically found in acylated forms, we suspected that one of the genes might encode an acyltransferase, providing directions to our functional annotations. Bioinformatic analyses indicated that the L142 protein contains an N-terminal acyltransferase domain and a predicted C-terminal glycosyltransferase. Sequence analysis of the structural model of the L142 N-terminal domain indicated significant homology with some characterized sugar acetyltransferases that modify the C-4 amino group in the bacillosamine or perosamine biosynthetic pathways. Using mass spectrometry and NMR analyses, we confirmed that the L142 N-terminal domain is a sugar acetyltransferase, catalyzing the transfer of an acetyl moiety from acetyl-CoA to the C-4 amino group of UDP-d-viosamine. The presence of acetylated viosamine in vivo has also been confirmed on the glycosylated viral fibers, using GC-MS and NMR. This study represents the first report of a virally encoded sugar acetyltransferase.


Assuntos
Aciltransferases/química , Proteínas do Capsídeo/química , Mimiviridae/enzimologia , Aciltransferases/metabolismo , Proteínas do Capsídeo/metabolismo , Glicosilação , Domínios Proteicos
7.
Adv Exp Med Biol ; 1104: 237-257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30484252

RESUMO

The capsid of Paramecium bursaria chlorella virus (PBCV-1) contains a heavily glycosylated major capsid protein, Vp54. The capsid protein contains four glycans, each N-linked to Asn. The glycan structures are unusual in many aspects: (1) they are attached by a ß-glucose linkage, which is rare in nature; (2) they are highly branched and consist of 8-10 neutral monosaccharides; (3) all four glycoforms contain a dimethylated rhamnose as the capping residue of the main chain, a hyper-branched fucose residue and two rhamnose residues ''with opposite absolute configurations; (4) the four glycoforms differ by the nonstoichiometric presence of two monosaccharides, L-arabinose and D-mannose ; (5) the N-glycans from all of the chloroviruses have a strictly conserved core structure; and (6) these glycans do not resemble any structures previously reported in the three domains of life.The structures of these N-glycoforms remained elusive for years because initial attempts to solve their structures used tools developed for eukaryotic-like systems, which we now know are not suitable for this noncanonical glycosylation pattern. This chapter summarizes the methods used to solve the chlorovirus complex glycan structures with the hope that these methodologies can be used by scientists facing similar problems.


Assuntos
Proteínas do Capsídeo/química , Chlorella/virologia , Glicosilação , Phycodnaviridae/química , Polissacarídeos/química
8.
Proc Natl Acad Sci U S A ; 110(34): 13956-60, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918378

RESUMO

The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a ß-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms.


Assuntos
Proteínas do Capsídeo/química , Chlorella/virologia , DNA Ligases/química , Oligossacarídeos/química , Paramecium/microbiologia , Proteínas Virais/química , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/metabolismo , DNA Ligases/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Monossacarídeos/química , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Virais/metabolismo
9.
Angew Chem Int Ed Engl ; 55(2): 654-8, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26582281

RESUMO

N-glycosylation is a fundamental modification of proteins and exists in the three domains of life and in some viruses, including the chloroviruses, for which a new type of core N-glycan is herein described. This N-glycan core structure, common to all chloroviruses, is a pentasaccharide with a ß-glucose linked to an asparagine residue which is not located in the typical sequon N-X-T/S. The glucose is linked to a terminal xylose unit and a hyperbranched fucose, which is in turn substituted with a terminal galactose and a second xylose residue. The third position of the fucose unit is always linked to a rhamnose, which is a semiconserved element because its absolute configuration is virus-dependent. Additional decorations occur on this core N-glycan and represent a molecular signature for each chlorovirus.


Assuntos
Phycodnaviridae/química , Polissacarídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
J Biol Chem ; 289(35): 24428-39, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25035429

RESUMO

Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways.


Assuntos
Carboidratos/biossíntese , Vírus de DNA/genética , Genoma Viral , Sequência de Aminoácidos , Vias Biossintéticas , Carboidratos/química , Vírus de DNA/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
11.
Int J Mol Sci ; 16(12): 29315-28, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26690138

RESUMO

Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.


Assuntos
Vírus de DNA/metabolismo , Proteínas Virais/metabolismo , Animais , Evolução Molecular , Glicoproteínas/metabolismo , Glicosilação , Glicosiltransferases/fisiologia , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional
12.
Glycobiology ; 24(1): 51-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24107487

RESUMO

Mimivirus is a giant DNA virus belonging to the Megaviridae family and infecting unicellular Eukaryotes of the genus Acanthamoeba. The viral particles are characterized by heavily glycosylated surface fibers. Several experiments suggest that Mimivirus and other related viruses encode an autonomous glycosylation system, forming viral glycoproteins independently of their host. In this study, we have characterized three Mimivirus proteins involved in the de novo uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) production: a glutamine-fructose-6-phosphate transaminase (CDS L619), a glucosamine-6-phosphate N-acetyltransferase (CDS L316) and a UDP-GlcNAc pyrophosphorylase (CDS R689). Sequence and enzymatic analyses have revealed some unique features of the viral pathway. While it follows the eukaryotic-like strategy, it also shares some properties of the prokaryotic pathway. Phylogenetic analyses revealed that the Megaviridae enzymes cluster in monophyletic groups, indicating that they share common ancestors, but did not support the hypothesis of recent acquisitions from one of the known hosts. Rather, viral clades branched at deep nodes in phylogenetic trees, forming independent clades outside sequenced cellular organisms. The intermediate properties between the eukaryotic and prokaryotic pathways, the phylogenetic analyses and the fact that these enzymes are shared between most of the known members of the Megaviridae family altogether suggest that the viral pathway has an ancient origin, resulting from lateral transfers of cellular genes early in the Megaviridae evolution, or from vertical inheritance from a more complex cellular ancestor (reductive evolution hypothesis). The identification of a virus-encoded UDP-GlcNAc pathway reinforces the concept that GlcNAc is a ubiquitous sugar representing a universal and fundamental process in all organisms.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Mimiviridae/enzimologia , Filogenia , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese , Proteínas Virais/metabolismo , Acanthamoeba/virologia , Mimiviridae/genética , Uridina Difosfato Ácido N-Acetilmurâmico/genética , Proteínas Virais/genética
13.
J Biol Chem ; 287(5): 3009-18, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22157758

RESUMO

Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.


Assuntos
Evolução Molecular , Glucosamina/análogos & derivados , Mimiviridae/enzimologia , Mimiviridae/genética , Transaminases/genética , Transaminases/metabolismo , Acanthamoeba/virologia , DNA Viral/genética , DNA Viral/metabolismo , Genes Virais/fisiologia , Glucosamina/genética , Glucosamina/metabolismo , Glicosilação , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
15.
Microlife ; 3: uqac002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223350

RESUMO

The recent discovery that giant viruses encode proteins related to sugar synthesis and processing paved the way for the study of their glycosylation machinery. We focused on the proposed Megavirinae subfamily, for which glycan-related genes were proposed to code for proteins involved in glycosylation of the layer of fibrils surrounding their icosahedral capsids. We compared sugar compositions and corresponding biosynthetic pathways among clade members using a combination of chemical and bioinformatics approaches. We first demonstrated that Megavirinae glycosylation differs in many aspects from what was previously reported for viruses, as they have complex glycosylation gene clusters made of six and up to 33 genes to synthetize their fibril glycans (biosynthetic pathways for nucleotide-sugars and glycosyltransferases). Second, they synthesize rare amino-sugars, usually restricted to bacteria and absent from their eukaryotic host. Finally, we showed that Megavirinae glycosylation is clade-specific and that Moumouvirus australiensis, a B-clade outsider, shares key features with Cotonvirus japonicus (clade E) and Tupanviruses (clade D). The existence of a glycosylation toolbox in this family could represent an advantageous strategy to survive in an environment where members of the same family are competing for the same amoeba host. This study expands the field of viral glycobiology and raises questions on how Megavirinae evolved such versatile glycosylation machinery.

16.
J Virol ; 84(17): 8829-38, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20538863

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three enzymes responsible for the synthesis of the sugar L-rhamnose: two UDP-D-glucose 4,6-dehydratases (UGDs) encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-D-glucose epimerase/reductase (UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER are expressed as late genes, which is consistent with their role in posttranslational modification of capsid proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan structures essential for virus replication and infection.


Assuntos
Mimiviridae/metabolismo , Phycodnaviridae/metabolismo , Ramnose/biossíntese , Proteínas Virais/metabolismo , Acanthamoeba castellanii/virologia , Vias Biossintéticas , Chlorella/virologia , Transferência Genética Horizontal , Mimiviridae/classificação , Mimiviridae/enzimologia , Mimiviridae/genética , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Filogenia , Proteínas Virais/genética
17.
J Exp Med ; 196(4): 459-68, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12186838

RESUMO

Macrophages exposed to macrophage colony-stimulating factor acquire the capacity to suppress T cell proliferation; this effect is associated with de novo expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). We have purified IDO and tested its activity in in vitro models of T cell activation. IDO was able to inhibit proliferation of CD4(+) T lymphocytes, CD8(+) T lymphocytes, and natural killer (NK) cells; proliferation of B lymphocytes was not affected. The inhibitory role of tryptophan and of its catabolites was then tested. In the presence of tryptophan, only L-kynurenine and picolinic acid inhibit cell proliferation. In a tryptophan-free medium cell proliferation was not affected. In the absence of tryptophan inhibition induced by L-kynurenine and picolinic acid was observed at concentrations below the lowest concentration that was effective in the presence of tryptophan, and quinolinic acid acquired some inhibitory capacity. Inhibition of cell proliferation induced by the tryptophan catabolites resulting from IDO activity was selective, applying only to cells undergoing activation. Resting cells were not affected and could subsequently activate normally. We suggest that IDO exerts its effect on cell proliferation by (i) starting the cascade of biochemical reactions that produce the three catabolites and by (ii) enhancing their inhibitory potential by depriving the extracellular microenvironment of tryptophan.


Assuntos
Células Matadoras Naturais/citologia , Linfócitos T/citologia , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Animais , Divisão Celular , Células Cultivadas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina/metabolismo , Leucócitos Mononucleares/citologia , Coelhos , Triptofano Oxigenase/isolamento & purificação
18.
Viruses ; 9(4)2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28441734

RESUMO

Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16 transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum and Golgi machinery to synthesize and transfer the glycans.


Assuntos
Chlorella/virologia , Genes Virais , Redes e Vias Metabólicas , Phycodnaviridae/genética , Phycodnaviridae/fisiologia , Metabolismo dos Carboidratos
19.
Cancer Res ; 63(19): 6282-9, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14559815

RESUMO

The levels of fucosylated glycoproteins in various cancers and inflammatory processes have been a subject of intense study. The level of fucosyltransferases and intracellular GDP-L-fucose, a sugar nucleotide and a common donor substrate for all fucosyltransferases, may regulate the level of fucosylated glycoproteins. This study reports on the determination of GDP-L-fucose levels in human hepatocellular carcinoma (HCC) and surrounding tissues, using a recently established high-throughput assay system. Levels of GDP-L-fucose in HCC tissues were significantly increased compared with adjacent nontumor tissues or normal livers. The mean +/- SD for GDP-L-fucose level was 3.6 +/- 0.2 micro mol/mg in control liver, 4.6 +/- 0.9 micro mol/mg in adjacent noninvolved liver tissues (chronic hepatitis, 4.4 +/- 0.7 micro mol/mg; liver cirrhosis, 4.8 +/- 0.9 micro mol/mg), and 7.1 +/- 2.5 micro mol/mg in HCC tissues. The level of GDP-L-fucose in HCC decreased in proportion with tumor size (r = -0.675, P = 0.0002). When expression of the series of genes responsible for GDP-L-fucose synthesis was investigated, the gene expression of FX was found to be increased in 70% (7 of 10) of the HCC tissues examined compared with that in their surrounding tissues. The levels of GDP-L-fucose were positively correlated with the expression of FX mRNA (r = 0.599, P = 0.0074). The levels of FX gene expression in some human hepatoma and hepatocyte cell lines were determined. FX mRNA production was strongly increased in HepG2 and Chang liver, moderately increased in Hep3B and HLF, and, in HLE, was similar to that of a normal human liver tissue. To investigate the effect of GDP-L-fucose on core fucosylation, FX cDNA was transfected into Hep3B cells, which express a relatively low level of GDP-L-fucose:N-acetyl-beta-D-glucosaminide alpha1-6 fucosyltransferase (alpha1-6 FucT) and FX mRNA. Transfection of this gene caused an increase in GDP-L-fucose levels as well as the extent of fucosylation on glycoproteins, including alpha-fetoprotein, as judged by reactivity to lectins. Collectively, the results herein suggest that the high level of fucosylation in HCC is dependent on a high expression of FX followed by increases in GDP-L-fucose, as well as an enhancement in alpha1-6 FucT expression. Thus, an elevation in GDP-L-fucose levels and the up-regulation of FX expression represent potential markers for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fucosiltransferases/biossíntese , Guanosina Difosfato Fucose/biossíntese , Neoplasias Hepáticas/metabolismo , Sequência de Carboidratos , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Feminino , Fucosiltransferases/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção
20.
Am J Med Genet ; 110(2): 131-5, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12116250

RESUMO

Leukocyte adhesion deficiency (LAD) type II is a rare autosomal recessive syndrome characterized by recurrent infections, typical dysmorphic features, the Bombay blood phenotype and severe growth and psychomotor retardation. It is attributed to a general absence of fucosylated glycans on the cell surface. Three Arab Israeli patients and one Turkish child have been reported so far. The primary defect in a specific GDP-L-fucose transporter of the Golgi apparatus has been disclosed recently. All three children reported by us are homozygous for one single founder mutation, different from that reported in the Turkish child. The amount of mRNA of the GDP-L-fucose transporter in cells from Arab patients and their parents are comparable to controls. Genotype/phenotype correlation studies show that the two different mutations are distinguished by differences in response to fucose supplementation and in the clinical phenotypes.


Assuntos
Proteínas de Transporte/genética , Defeitos Congênitos da Glicosilação/genética , Efeito Fundador , Síndrome da Aderência Leucocítica Deficitária/genética , Proteínas de Transporte de Monossacarídeos , Sequência de Bases , Defeitos Congênitos da Glicosilação/patologia , DNA/química , DNA/genética , Análise Mutacional de DNA , Saúde da Família , Feminino , Genótipo , Humanos , Síndrome da Aderência Leucocítica Deficitária/patologia , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA