Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Trends Parasitol ; 39(8): 682-695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349193

RESUMO

Epigenetic marks enable cells to acquire new biological features that favor their adaptation to environmental changes. These marks are chemical modifications on chromatin-associated proteins and nucleic acids that lead to changes in the chromatin landscape and may eventually affect gene expression. The chemical tags of these epigenetic marks are comprised of intermediate cellular metabolites. The number of discovered associations between metabolism and epigenetics has increased, revealing how environment influences gene regulation and phenotype diversity. This connection is relevant to all organisms but underappreciated in digenetic parasites, which must adapt to different environments as they progress through their life cycles. This review speculates and proposes associations between epigenetics and metabolism in trypanosomes, which are protozoan parasites that cause human and livestock diseases.


Assuntos
Epigênese Genética , Trypanosoma , Humanos , Cromatina , Trypanosoma/genética
2.
Front Cell Infect Microbiol ; 11: 802613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059327

RESUMO

Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , DNA de Cadeia Simples , Leishmania major , DNA de Protozoário , Humanos , Leishmania major/efeitos dos fármacos , Leishmania major/genética , Estresse Oxidativo , Fosforilação
3.
Front Cell Dev Biol ; 9: 633195w, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055812

RESUMO

DNA topoisomerases are enzymes that modulate DNA topology. Among them, topoisomerase 3α is engaged in genomic maintenance acting in DNA replication termination, sister chromatid separation, and dissolution of recombination intermediates. To evaluate the role of this enzyme in Trypanosoma cruzi, the etiologic agent of Chagas disease, a topoisomerase 3α knockout parasite (TcTopo3α KO) was generated, and the parasite growth, as well as its response to several DNA damage agents, were evaluated. There was no growth alteration caused by the TcTopo3α knockout in epimastigote forms, but a higher dormancy rate was observed. TcTopo3α KO trypomastigote forms displayed reduced invasion rates in LLC-MK2 cells when compared with the wild-type lineage. Amastigote proliferation was also compromised in the TcTopo3α KO, and a higher number of dormant cells was observed. Additionally, TcTopo3α KO epimastigotes were not able to recover cell growth after gamma radiation exposure, suggesting the involvement of topoisomerase 3α in homologous recombination. These parasites were also sensitive to drugs that generate replication stress, such as cisplatin (Cis), hydroxyurea (HU), and methyl methanesulfonate (MMS). In response to HU and Cis treatments, TcTopo3α KO parasites showed a slower cell growth and was not able to efficiently repair the DNA damage induced by these genotoxic agents. The cell growth phenotype observed after MMS treatment was similar to that observed after gamma radiation, although there were fewer dormant cells after MMS exposure. TcTopo3α KO parasites showed a population with sub-G1 DNA content and strong γH2A signal 48 h after MMS treatment. So, it is possible that DNA-damaged cell proliferation due to the absence of TcTopo3α leads to cell death. Whole genome sequencing of MMS-treated parasites showed a significant reduction in the content of the multigene families DFG-1 and RHS, and also a possible erosion of the sub-telomeric region from chromosome 22, relative to non-treated knockout parasites. Southern blot experiments suggest telomere shortening, which could indicate genomic instability in TcTopo3α KO cells owing to MMS treatment. Thus, topoisomerase 3α is important for homologous recombination repair and replication stress in T. cruzi, even though all the pathways in which this enzyme participates during the replication stress response remains elusive.

4.
Trends Parasitol, v. 39, n. 8, p. 682-695, ago. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-5087

RESUMO

Epigenetic marks enable cells to acquire new biological features that favor their adaptation to environmental changes. These marks are chemical modifications on chromatin-associated proteins and nucleic acids that lead to changes in the chromatin landscape and may eventually affect gene expression. The chemical tags of these epigenetic marks are comprised of intermediate cellular metabolites. The number of discovered associations between metabolism and epigenetics has increased, revealing how environment influences gene regulation and phenotype diversity. This connection is relevant to all organisms but underappreciated in digenetic parasites, which must adapt to different environments as they progress through their life cycles. This review speculates and proposes associations between epigenetics and metabolism in trypanosomes, which are protozoan parasites that cause human and livestock diseases.

5.
PLoS Negl Trop Dis ; 12(11): e0006875, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30422982

RESUMO

In Trypanosoma cruzi, the etiologic agent of Chagas disease, Rad51 (TcRad51) is a central enzyme for homologous recombination. Here we describe the different roles of TcRad51 in DNA repair. Epimastigotes of T. cruzi overexpressing TcRAD51 presented abundant TcRad51-labeled foci before gamma irradiation treatment, and a faster growth recovery when compared to single-knockout epimastigotes for RAD51. Overexpression of RAD51 also promoted increased resistance against hydrogen peroxide treatment, while the single-knockout epimastigotes for RAD51 exhibited increased sensitivity to this oxidant agent, which indicates a role for this gene in the repair of DNA oxidative lesions. In contrast, TcRad51 was not involved in the repair of crosslink lesions promoted by UV light and cisplatin treatment. Also, RAD51 single-knockout epimastigotes showed a similar growth rate to that exhibited by wild-type ones after treatment with hydroxyurea, but an increased sensitivity to methyl methane sulfonate. Besides its role in epimastigotes, TcRad51 is also important during mammalian infection, as shown by increased detection of T. cruzi cells overexpressing RAD51, and decreased detection of single-knockout cells for RAD51, in both fibroblasts and macrophages infected with amastigotes. Besides that, RAD51-overexpressing parasites infecting mice also presented increased infectivity and higher resistance against benznidazole. We thus show that TcRad51 is involved in the repair of DNA double strands breaks and oxidative lesions in two different T. cruzi developmental stages, possibly playing an important role in the infectivity of this parasite.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Protozoários/metabolismo , Rad51 Recombinase/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Animais , Doença de Chagas/parasitologia , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Humanos , Masculino , Camundongos , Estresse Oxidativo , Proteínas de Protozoários/genética , Rad51 Recombinase/genética , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/efeitos da radiação , Raios Ultravioleta
6.
Trends Parasitol ; 33(11): 858-874, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28844718

RESUMO

In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens.


Assuntos
Replicação do DNA/fisiologia , Trypanosoma/genética , Animais , Sistemas de Liberação de Medicamentos , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Pesquisa/tendências
7.
Front Cell Dev Biol, v. 9, 633195w, maio. 2021
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-3817

RESUMO

DNA topoisomerases are enzymes that modulate DNA topology. Among them, topoisomerase 3α is engaged in genomic maintenance acting in DNA replication termination, sister chromatid separation, and dissolution of recombination intermediates. To evaluate the role of this enzyme in Trypanosoma cruzi, the etiologic agent of Chagas disease, a topoisomerase 3α knockout parasite (TcTopo3α KO) was generated, and the parasite growth, as well as its response to several DNA damage agents, were evaluated. There was no growth alteration caused by the TcTopo3α knockout in epimastigote forms, but a higher dormancy rate was observed. TcTopo3α KO trypomastigote forms displayed reduced invasion rates in LLC-MK2 cells when compared with the wild-type lineage. Amastigote proliferation was also compromised in the TcTopo3α KO, and a higher number of dormant cells was observed. Additionally, TcTopo3α KO epimastigotes were not able to recover cell growth after gamma radiation exposure, suggesting the involvement of topoisomerase 3α in homologous recombination. These parasites were also sensitive to drugs that generate replication stress, such as cisplatin (Cis), hydroxyurea (HU), and methyl methanesulfonate (MMS). In response to HU and Cis treatments, TcTopo3α KO parasites showed a slower cell growth and was not able to efficiently repair the DNA damage induced by these genotoxic agents. The cell growth phenotype observed after MMS treatment was similar to that observed after gamma radiation, although there were fewer dormant cells after MMS exposure. TcTopo3α KO parasites showed a population with sub-G1 DNA content and strong γH2A signal 48 h after MMS treatment. So, it is possible that DNA-damaged cell proliferation due to the absence of TcTopo3α leads to cell death. Whole genome sequencing of MMS-treated parasites showed a significant reduction in the content of the multigene families DFG-1 and RHS, and also a possible erosion of the sub-telomeric region from chromosome 22, relative to non-treated knockout parasites. Southern blot experiments suggest telomere shortening, which could indicate genomic instability in TcTopo3α KO cells owing to MMS treatment. Thus, topoisomerase 3α is important for homologous recombination repair and replication stress in T. cruzi, even though all the pathways in which this enzyme participates during the replication stress response remains elusive.

8.
Trends Parasitol. ; 33(11): 858-874, 2017.
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib17811

RESUMO

In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA