Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Blood ; 121(7): 1200-8, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23223430

RESUMO

Mutations in HFE lead to hereditary hemochromatosis (HH) because of inappropriately high iron uptake from the diet resulting from decreased hepatic expression of the iron-regulatory hormone hepcidin. -thalassemia is a congenital anemia caused by partial or complete loss of -globin synthesis causing ineffective erythropoiesis, anemia, decreased hepcidin production, and secondary iron overload. Tmprss6 is postulated to regulate hepcidin production by cleaving Hemojuvelin (Hjv), a key modulator of hepcidin expression, from the hepatocyte surface. On this basis, we hypothesized that treatment of mouse models of HH (Hfe(-/-)) and -thalassemia intermedia (Hbb(th3/+)) with Tmprss6 siRNA formulated in lipid nanoparticles (LNPs) that are preferentially taken up by the liver would increase hepcidin expression and lessen the iron loading in both models. In the present study, we demonstrate that LNP-Tmprss6 siRNA treatment of Hfe(-/-) and Hbb(th3/+) mice induces hepcidin and diminishes tissue and serum iron levels. Furthermore, LNP-Tmprss6 siRNA treatment of Hbb(th3/+) mice substantially improved the anemia by altering RBC survival and ineffective erythropoiesis. Our results indicate that pharmacologic manipulation of Tmprss6 with RNAi therapeutics isa practical approach to treating iron overload diseases associated with diminished hepcidin expression and may have efficacy in modifying disease-associated morbidities of -thalassemia intermedia.


Assuntos
Sobrecarga de Ferro/terapia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Talassemia beta/terapia , Anemia/genética , Anemia/metabolismo , Anemia/terapia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sequência de Bases , Modelos Animais de Doenças , Envelhecimento Eritrocítico , Eritropoese , Feminino , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/terapia , Proteína da Hemocromatose , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Serina Endopeptidases/genética , Talassemia beta/genética , Talassemia beta/metabolismo
2.
Antiviral Res ; 77(3): 225-31, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18242722

RESUMO

Small interfering RNAs (siRNAs) work through RNA interference (RNAi), the natural RNA inhibitory pathway, to down-regulate protein production by inhibiting targeted mRNA in a sequence-specific manner. ALN-RSV01 is an siRNA directed against the mRNA encoding the N-protein of respiratory syncytial virus (RSV) that exhibits specific in vitro and in vivo anti-RSV activity. The results of two safety and tolerability studies with ALN-RSV01 involving 101 healthy adults (65 active, 36 placebo, single- and multiple dose, observer-blind, randomized dose-escalation) are described. Intranasal administration of ALN-RSV01 was well tolerated over a dose range up through 150mg as a single dose and for five daily doses. Adverse events were similar in frequency and severity to placebo (normal saline) and were transient, mild to moderate, with no dose-dependent trend. The frequency or severity of adverse events did not increase with increasing ALN-RSV01 exposure. All subjects completed all treatments and assessments with no early withdrawals or serious adverse events. Physical examinations, vital signs, ECGs and laboratory tests were normal. Systemic bioavailability of ALN-RSV01 was minimal. ALN-RSV01 appears safe and well tolerated when delivered intranasally and is a promising therapeutic candidate for further clinical development.


Assuntos
Antivirais/efeitos adversos , Antivirais/farmacocinética , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Administração Intranasal , Adolescente , Adulto , Antivirais/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/administração & dosagem
3.
Cancer Discov ; 3(4): 406-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358650

RESUMO

UNLABELLED: RNA interference (RNAi) is a potent and specific mechanism for regulating gene expression. Harnessing RNAi to silence genes involved in disease holds promise for the development of a new class of therapeutics. Delivery is key to realizing the potential of RNAi, and lipid nanoparticles (LNP) have proved effective in delivery of siRNAs to the liver and to tumors in animals. To examine the activity and safety of LNP-formulated siRNAs in humans, we initiated a trial of ALN-VSP, an LNP formulation of siRNAs targeting VEGF and kinesin spindle protein (KSP), in patients with cancer. Here, we show detection of drug in tumor biopsies, siRNA-mediated mRNA cleavage in the liver, pharmacodynamics suggestive of target downregulation, and antitumor activity, including complete regression of liver metastases in endometrial cancer. In addition, we show that biweekly intravenous administration of ALN-VSP was safe and well tolerated. These data provide proof-of-concept for RNAi therapeutics in humans and form the basis for further development in cancer. SIGNIFICANCE: The fi ndings in this report show safety, pharmacokinetics, RNAi mechanism of action, and clinical activity with a novel fi rst-in-class LNP-formulated RNAi therapeutic in patients with cancer. The ability to harness RNAi to facilitate specifi c multitargeting, as well as increase the number of druggable targets, has important implications for future drug development in oncology.


Assuntos
Cinesinas/genética , Neoplasias Hepáticas/terapia , Nanopartículas/administração & dosagem , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Ther ; 12(1): 128-36, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15963928

RESUMO

Hammerhead ribozymes are small catalytic RNA molecules that can be targeted to any RNA molecule containing a putative cleavage site. We developed a vector (pCOLZ) that uses the COL1A1 promoter to drive expression of a self-cleaving multimeric ribozyme (M8Rz547) and its monomeric counterpart (Rz547). The ribozymes were stably coexpressed in MC3T3-E1 osteoblasts expressing a truncated COL1A1 target transcript. The multimeric ribozyme exhibited self-cleavage to derivative fragments, including monomers. Increased expression of ribozymes was found in cells expressing the multimeric ribozyme. A modest reduction of truncated target transcript and protein was seen in cells expressing the ribozyme monomer, while nearly complete ablation of target transcript and protein occurred in cells expressing the ribozyme multimer. A reversion to a more normal collagen phenotype, measured as an increase in fibril diameter and restored fibrillar architecture, and a decreased rate of collagen turnover were seen in cells expressing the ribozyme multimer.


Assuntos
Colágeno Tipo I/metabolismo , RNA Catalítico/fisiologia , Animais , Sequência de Bases , Bovinos , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/ultraestrutura , Cadeia alfa 1 do Colágeno Tipo I , Camundongos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Osteoblastos/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA