Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579152

RESUMO

It is a well-understood fact that the transport of excitations throughout a lattice is intimately governed by the underlying structures. Hence, it is only natural to recognize that the dispersion of information also has to depend on the lattice geometry. In the present work, we demonstrate that two-dimensional lattices described by the Bose-Hubbard model exhibit information scrambling for systems as little as two hexagons. However, we also find that the out-of-time-ordered correlator (OTOC) shows the exponential decay characteristic for quantum chaos only for a judicious choice of local observables. More generally, the OTOC is better described by Gaussian-exponential convolutions, which alludes to the close similarity of information scrambling and decoherence theory.

2.
Entropy (Basel) ; 25(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136453

RESUMO

Quantum Darwinism explains the emergence of classical objectivity within a quantum universe. However, to date, most research on quantum Darwinism has focused on specific models and their stationary properties. To further our understanding of the quantum-to-classical transition, it appears desirable to identify the general criteria a Hamiltonian has to fulfill to support classical reality. To this end, we categorize all N-qubit models with two-body interactions, and show that only those with separable interaction of the system and environment can support a pointer basis. We further demonstrate that "perfect" quantum Darwinism can only emerge if there are no intra-environmental interactions. Our analysis is complemented by solving the ensuing dynamics. We find that in systems exhibiting information scrambling, the dynamical emergence of classical objectivity directly competes with the non-local spread of quantum correlations. Our rigorous findings are illustrated through the numerical analysis of four representative models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA