Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Br J Sports Med ; 56(8): 439-445, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165084

RESUMO

PURPOSE: To determine associations between thermal responses, medical events, performance, heat acclimation and health status during a World Athletics Championships in hot-humid conditions. METHODS: From 305 marathon and race-walk starters, 83 completed a preparticipation questionnaire on health and acclimation. Core (Tcore; ingestible pill) and skin (Tskin; thermal camera) temperatures were measured in-competition in 56 and 107 athletes, respectively. 70 in-race medical events were analysed retrospectively. Performance (% personal best) and did not finish (DNF) were extracted from official results. RESULTS: Peak Tcore during competition reached 39.6°C±0.6°C (maximum 41.1°C). Tskin decreased from 32.2°C±1.3°C to 31.0°C±1.4°C during the races (p<0.001). Tcore was not related to DNF (25% of starters) or medical events (p≥0.150), whereas Tskin, Tskin rate of decrease and Tcore-to-Tskin gradient were (p≤0.029). A third of the athletes reported symptoms in the 10 days preceding the event, mainly insomnia, diarrhoea and stomach pain, with diarrhoea (9% of athletes) increasing the risk of in-race medical events (71% vs 17%, p<0.001). Athletes (63%) who performed 5-30 days heat acclimation before the competition: ranked better (18±13 vs 28±13, p=0.009), displayed a lower peak Tcore (39.4°C±0.4°C vs 39.8°C±0.7°C, p=0.044) and larger in-race decrease in Tskin (-1.4°C±1.0°C vs -0.9°C±1.2°C, p=0.060), than non-acclimated athletes. Although not significant, they also showed lower DNF (19% vs 30%, p=0.273) and medical events (19% vs 32%, p=0.179). CONCLUSION: Tskin, Tskin rate of decrease and Tcore-to-Tskin gradient were important indicators of heat tolerance. While heat-acclimated athletes ranked better, recent diarrhoea represented a significant risk factor for DNF and in-race medical events.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Aclimatação , Atletas , Regulação da Temperatura Corporal/fisiologia , Feminino , Nível de Saúde , Humanos , Masculino , Estudos Retrospectivos , Caminhada
2.
Exp Physiol ; 106(1): 126-138, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32557892

RESUMO

NEW FINDINGS: What is the central question of this study? Increasing severity of arterial hypoxaemia induces a shift towards greater central, relative to peripheral, mechanisms of fatigue during exhaustive exercise. Does a similar pattern exist for 'all-out' repeated-sprint running? What is the main finding and its importance? Severe normobaric hypoxia [fraction of inspired oxygen ( FI,O2 ) = 0.13] did not induce a greater contribution from central fatigue, but indices of muscle fatigue were elevated compared with normoxia ( FI,O2  = 0.21) and moderate hypoxia ( FI,O2  = 0.17). This suggests a different fatigue response to repeated-sprint running versus other exercise modalities and, consequently, that task specificity might modulate the effect of hypoxia on the central versus peripheral contribution to fatigue. ABSTRACT: We examined the effects of increasing hypoxia severity on repeated-sprint running performance and neuromuscular fatigue. Thirteen active males completed eight sprints of 5 s (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level, SL; FI,O2  = 0.21), in moderate hypoxia (MH; FI,O2  = 0.17) and in severe hypoxia (SH; FI,O2  = 0.13). After 6 min of passive recovery, in all conditions a second set of four sprints of 5 s was conducted in normoxia. Neuromuscular function of the knee extensors was assessed at baseline (Pre-) and 1 min after set 1 (Post-set 1) and set 2 (Post-set 2). In set 1, the mean distance covered in SL (22.9 ± 1.2 m) was not different to MH (22.7 ± 1.3 m; P = 0.71) but was greater than in SH (22.3 ± 1.3 m; P = 0.04). No significant differences between conditions for mean distance occurred in set 2. There was a decrease in maximal voluntary contraction torque (Δ = -31.4 ± 18.0 N m, P < 0.001) and voluntary activation (%VA; Δ = -7.1 ± 5.1%, P = 0.001) from Pre- to Post-set 1, but there was no effect of hypoxia. No further change from Post-set 1 to Post-set 2 occurred for either maximal voluntary contraction or %VA. The decrease in potentiated twitch torque in SL (Δ = -13.3 ± 5.2 N m) was not different to MH (Δ = -13.3 ± 6.3 N m) but was lower than in SH (Δ = -16.1 ± 4 N m) from Pre- to Post-set 1 (interaction, P < 0.003). Increasing severity of normobaric hypoxia, up to an equivalent elevation of 3600 m, can increase indices of peripheral fatigue but does not impact central fatigue after 'all-out' repeated-sprint running.


Assuntos
Hipóxia/fisiopatologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Adulto , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Exercício Físico/fisiologia , Teste de Esforço , Humanos , Joelho/fisiologia , Masculino
3.
Br J Sports Med ; 55(23): 1335-1341, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33579722

RESUMO

PURPOSE: To characterise hydration, cooling, body mass loss, and core (Tcore) and skin (Tsk) temperatures during World Athletics Championships in hot-humid conditions. METHODS: Marathon and race-walk (20 km and 50 km) athletes (n=83, 36 women) completed a pre-race questionnaire. Pre-race and post-race body weight (n=74), Tcore (n=56) and Tsk (n=49; thermography) were measured. RESULTS: Most athletes (93%) had a pre-planned drinking strategy (electrolytes (83%), carbohydrates (81%)) while ice slurry was less common (11%; p<0.001). More men than women relied on electrolytes and carbohydrates (91%-93% vs 67%-72%, p≤0.029). Drinking strategies were based on personal experience (91%) rather than external sources (p<0.001). Most athletes (80%) planned pre-cooling (ice vests (53%), cold towels (45%), neck collars (21%) and ice slurry (21%)) and/or mid-cooling (93%; head/face dousing (65%) and cold water ingestion (52%)). Menthol usage was negligible (1%-2%). Pre-race Tcore was lower in athletes using ice vests (37.5°C±0.4°C vs 37.8°C±0.3°C, p=0.024). Tcore (pre-race 37.7°C±0.3°C, post-race 39.6°C±0.6°C) was independent of event, ranking or performance (p≥0.225). Pre-race Tsk was correlated with faster race completion (r=0.32, p=0.046) and was higher in non-finishers (did not finish (DNF); 33.8°C±0.9°C vs 32.6°C±1.4°C, p=0.017). Body mass loss was higher in men than women (-2.8±1.5% vs -1.3±1.6%, p<0.001), although not associated with performance. CONCLUSION: Most athletes' hydration strategies were pre-planned based on personal experience. Ice vests were the most adopted pre-cooling strategy and the only one minimising Tcore, suggesting that event organisers should be cognisant of logistics (ie, freezers). Dehydration was moderate and unrelated to performance. Pre-race Tsk was related to performance and DNF, suggesting that Tsk modulation should be incorporated into pre-race strategies.


Assuntos
Atletas , Temperatura Corporal , Regulação da Temperatura Corporal , Temperatura Baixa , Feminino , Temperatura Alta , Humanos , Masculino , Caminhada
4.
Sports Med ; 54(1): 127-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676620

RESUMO

BACKGROUND: It is important to consider biological sex as a variable that might influence exercise adaptation in order to optimize exercise prescription for men and women. OBJECTIVE: The aim of this study was to quantify the impact of biological sex on maximal oxygen uptake ([Formula: see text]O2max) and performance outcomes after high-intensity interval training (HIIT). METHODS: A systematic search and review was conducted by two independent reviewers up to 8 September 2022 using MEDLINE, SPORTDiscus, and Sports Medicine & Education Index in ProQuest. Trials including healthy adults were included if they presented data for or compared male and female [Formula: see text]O2max or performance outcomes in response to HIIT. Performance outcomes included measures of exercise performance and concurrently measured physiological adaptations. Where appropriate, a random-effects, pre-post meta-analysis was undertaken. Data were sub-grouped for men and women, baseline training level, mean age, intervention type, and intervention length. Heterogeneity was assessed using Chi2, Cochran's Q, and Higgins I2 and sensitivity analyses, where required. Study quality was assessed using the Newcastle-Ottawa Scale and publication bias was assessed through visual inspection of funnel plots. RESULTS: Thirty-three references from 28 trials were included in the review (n = 965; 462 women and 503 men). Meta-analyses included 19 studies for [Formula: see text]O2max, eight for peak power output from [Formula: see text]O2max testing (PPO), and five for threshold power (powerAT). Meta-analyses revealed similar increases in [Formula: see text]O2max in women (g = 0.57; 95% CI 0.44-0.69) and men (g = 0.57; 95% CI 0.42-0.72), and powerAT in women (g = 0.38; 95% CI 0.13-0.64) and men (g = 0.38; 95% CI 0.11-0.64). Raw mean differences for change in [Formula: see text]O2max were Δ 0.32 L·min-1 and 3.50 mL·kg-1·min-1 in men, versus Δ 0.20 L·min-1 and 3.34 mL·kg-1·min-1 for women. No significant sex differences were present for the primary analysis of any outcome. After sub-grouping, significant differences were present for PPO where the effect size was higher for well-trained women (g = 0.37) compared with well-trained men (g = 0.17), and for [Formula: see text]O2max where interventions with a duration of 4 weeks or less had significantly smaller effect sizes compared with those longer than 4 weeks (p < 0.001). Unweighted mean percentage change in [Formula: see text]O2max, PPO, and powerAT across studies was 11.16 ± 7.39%, 11.16 ± 5.99%, and 8.07 ± 6.55% for women, and 10.90 ± 5.75%, 8.22 ± 5.09%, and 7.09 ± 7.17% for men, respectively. Significant heterogeneity was present for both [Formula: see text]O2max and PPO (I2, range: 62.06-78.80%). Sub-grouping by baseline training status and intervention length decreased heterogeneity in most groups. A qualitative synthesis of other outcomes indicated similar improvements in fitness and performance for men and women with some evidence suggesting differences in the mechanisms of adaptation. LIMITATIONS AND RISK OF BIAS: Publication bias is unlikely to have significantly influenced results for [Formula: see text]O2max or powerAT, but the meta-analysis of PPO could have benefitted from additional study data to strengthen results. The overlap in age categories and sensitivity of the analysis limits the accuracy of the results of the sub-grouping by age. CONCLUSIONS: Findings indicated no sex-specific differences for any fitness or performance outcomes. Baseline training status and intervention length accounted for most variability in outcomes. PROSPERO registration number: CRD42021272615.


Assuntos
Aptidão Cardiorrespiratória , Treinamento Intervalado de Alta Intensidade , Adulto , Feminino , Humanos , Masculino , Treinamento Intervalado de Alta Intensidade/métodos , Consumo de Oxigênio/fisiologia
5.
Int J Sports Physiol Perform ; : 1-4, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244192

RESUMO

BACKGROUND: Efforts are needed to improve antidoping procedures. The widespread use of power meters among cyclists could help in this regard. However, controversy exists on whether performance monitoring through power-output data could be of help for antidoping purposes. PURPOSE: The objective of the present study was to provide insight into the feasibility and utility of implementing power-based performance monitoring in elite cycling. An expert panel of 15 applied sport scientists and professional cycling coaches were asked for their opinions and perspectives on incorporating power data into the antidoping risk-assessment process. RESULTS: Two different viewpoints were identified from the responses provided by the experts. Some believed that power monitoring could be implemented as an antidoping tool, provided that several surmountable challenges are first addressed. These authors provided suggestions related to the potential practical implementation of such measures. Others, on the contrary, believed that power meters lack sufficient reliability and suggest that the professional cycling world presents conflicts of interest that make this intervention impossible to implement nowadays. CONCLUSIONS: The debate around the utility of power-meter data in the antidoping fight has been ongoing for more than a decade. According to the opinions provided by the experts' panel, there is still no consensus on the real utility and practical implementation of this intervention.

6.
Med Sci Sports Exerc ; 55(10): 1923-1932, 2023 10 01.
Artigo em Inglês, Francês | MEDLINE | ID: mdl-37259251

RESUMO

PURPOSE: The objective of this study is to investigate the effectiveness of novel repeated-sprint training in hypoxia (RSH) protocol, likely maximizing hypoxic stimulus (higher than commonly used) while preserving training quality (interset rest in normoxia). METHODS: Twenty-three world-class female rugby sevens players performed four repeated-sprint training sessions (4 sets of 5 × 5-s cycle sprints-25-s intersprint recovery and 3-min interset rest) under normobaric hypoxia (RSH, exercise and interset rest at FiO 2 of 10.6% and 20.9%, respectively; n = 12) or normoxia (repeated-sprint training in normoxia; exercise and interset rest at FiO 2 of 20.9%; n = 11) during a 9-d training camp before international competition. Repeated-sprint ability (8 × 5-s treadmill sprints-25-s recovery), on-field aerobic capacity, and brachial endothelial function were assessed pre- and postintervention. RESULTS: Arterial oxygen saturation (pooled data: 87.0% ± 3.1% vs 96.7% ± 2.9%, P < 0.001) and peak and mean power outputs (sets 1 to 4 average decrease: -21.7% ± 7.2% vs -12.0% ± 3.8% and -24.9% ± 8.1% vs -14.9% ± 3.5%; both P < 0.001) were lower in RSH versus repeated-sprint training in normoxia. The cumulated repeated-sprint distance covered significantly increased from pre- to postintervention (+1.9% ± 3.0%, P = 0.019), irrespective of the condition ( P = 0.149). On-field aerobic capacity did not change (all P > 0.45). There was no significant interaction (all P > 0.240) or condition main effect (all P > 0.074) for any brachial artery endothelial function variable. Only peak diameter increased ( P = 0.026), whereas baseline and peak shear stress decreased ( P = 0.014 and 0.019, respectively), from pre- to postintervention. CONCLUSIONS: In world-class female rugby sevens players, only four additional repeated-sprint sessions before competition improve repeated-sprint ability and brachial endothelial function. However, adding severe hypoxic stress during sets of repeated sprints only did not provide supplementary benefits.


PURPOSE: The objective of this study is to investigate the effectiveness of novel repeated-sprint training in hypoxia (RSH) protocol, likely maximizing hypoxic stimulus (higher than commonly used) while preserving training quality (interset rest in normoxia). METHODS: Twenty-three world-class female rugby sevens players performed four repeated-sprint training sessions (4 sets of 5 × 5-s cycle sprints­25-s intersprint recovery and 3-min interset rest) under normobaric hypoxia (RSH, exercise and interset rest at FiO 2 of 10.6% and 20.9%, respectively; n = 12) or normoxia (repeated-sprint training in normoxia; exercise and interset rest at FiO 2 of 20.9%; n = 11) during a 9-d training camp before international competition. Repeated-sprint ability (8 × 5-s treadmill sprints­25-s recovery), on-field aerobic capacity, and brachial endothelial function were assessed pre- and postintervention. RESULTS: Arterial oxygen saturation (pooled data: 87.0% ± 3.1% vs 96.7% ± 2.9%, P < 0.001) and peak and mean power outputs (sets 1 to 4 average decrease: −21.7% ± 7.2% vs −12.0% ± 3.8% and −24.9% ± 8.1% vs −14.9% ± 3.5%; both P < 0.001) were lower in RSH versus repeated-sprint training in normoxia. The cumulated repeated-sprint distance covered significantly increased from pre- to postintervention (+1.9% ± 3.0%, P = 0.019), irrespective of the condition ( P = 0.149). On-field aerobic capacity did not change (all P > 0.45). There was no significant interaction (all P > 0.240) or condition main effect (all P > 0.074) for any brachial artery endothelial function variable. Only peak diameter increased ( P = 0.026), whereas baseline and peak shear stress decreased ( P = 0.014 and 0.019, respectively), from pre- to postintervention. CONCLUSIONS: In world-class female rugby sevens players, only four additional repeated-sprint sessions before competition improve repeated-sprint ability and brachial endothelial function. However, adding severe hypoxic stress during sets of repeated sprints only did not provide supplementary benefits.


Assuntos
Desempenho Atlético , Condicionamento Físico Humano , Humanos , Feminino , Rugby , Altitude , Hipóxia , Condicionamento Físico Humano/métodos
7.
Int J Sports Physiol Perform ; 18(9): 1053-1061, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553108

RESUMO

PURPOSE: To investigate the effects of a training camp with heat and/or hypoxia sessions on hematological and thermoregulatory adaptations. METHODS: Fifty-six elite male rugby players completed a 2-week training camp with 5 endurance and 5 repeated-sprint sessions, rugby practice, and resistance training. Players were separated into 4 groups: CAMP trained in temperate conditions at sea level, HEAT performed the endurance sessions in the heat, ALTI slept and performed the repeated sprints at altitude, and H + A was a combination of the heat and altitude groups. RESULTS: Blood volume across all groups increased by 140 mL (95%CI, 42-237; P = .006) and plasma volume by 97 mL (95%CI 28-167; P = .007) following the training camp. Plasma volume was 6.3% (0.3% to 12.4%) higher in HEAT than ALTI (P = .034) and slightly higher in HEAT than H + A (5.6% [-0.3% to 11.7%]; P = .076). Changes in hemoglobin mass were not significant (P = .176), despite a ∼1.2% increase in ALTI and H + A and a ∼0.7% decrease in CAMP and HEAT. Peak rectal temperature was lower during a postcamp heat-response test in HEAT (0.3 °C [0.1-0.5]; P = .010) and H + A (0.3 °C [0.1-0.6]; P = .005). Oxygen saturation upon waking was lower in ALTI (3% [2% to 5%]; P < .001) and H + A (4% [3% to 6%]; P < .001) than CAMP and HEAT. CONCLUSION: Although blood and plasma volume increased following the camp, sleeping at altitude impeded the increase when training in the heat and only marginally increased hemoglobin mass. Heat training induced adaptations commensurate with partial heat acclimation; however, combining heat training and altitude training and confinement during a training camp did not confer concomitant hematological adaptations.


Assuntos
Aclimatação , Rugby , Humanos , Masculino , Aclimatação/fisiologia , Adaptação Fisiológica , Hipóxia , Hemoglobinas , Temperatura Alta
8.
J Appl Physiol (1985) ; 134(5): 1300-1311, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022963

RESUMO

The purpose of this study was to characterize thermoregulatory and performance responses of elite road-race athletes, while competing in hot, humid, night-time conditions during the 2019 IAAF World Athletic Championships. Male and female athletes, competing in the 20 km racewalk (n = 20 males, 24 females), 50 km racewalk (n = 19 males, 8 females), and marathon (n = 15 males, 22 females) participated. Exposed mean skin (Tsk) and continuous core body (Tc) temperature were recorded with infrared thermography and ingestible telemetry pill, respectively. The range of ambient conditions (recorded roadside) was 29.3°C-32.7°C air temperature, 46%-81% relative humidity, 0.1-1.7 m·s-1 air velocity, and 23.5°C-30.6°C wet bulb globe temperature. Tc increased by 1.5 ± 0.1°C but mean Tsk decreased by 1.5 ± 0.4°C over the duration of the races. Tsk and Tc changed most rapidly at the start of the races and then plateaued, with Tc showing a rapid increase again at the end, in a pattern mirroring pacing. Performance times were between 3% and 20% (mean = 113 ± 6%) longer during the championships compared with the personal best (PB) of athletes. Overall mean performance relative to PB was correlated with the wet-bulb globe temperature (WBGT) of each race (R2 = 0.89), but not with thermophysiological variables (R2 ≤ 0.3). As previously reported in exercise heat stress, in this field study Tc rose with exercise duration, whereas Tsk showed a decline. The latter contradicts the commonly recorded rise and plateau in laboratory studies at similar ambient temperatures but without realistic air movement.NEW & NOTEWORTHY This paper provides a kinetic observation of both core and skin temperatures in 108 elite athletes, during various outdoor competition events, adding to the very limited data so far available in the literature taken during elite competitions. The field skin temperature findings contrast previous laboratory findings, likely due to differences in relative air velocity and its impact on the evaporation of sweat. The rapid rise in skin temperature following cessation of exercise highlights the importance of infrared thermography measurements being taken during motion, not during breaks, when being used as a measurement of skin temperature during exercise.


Assuntos
Regulação da Temperatura Corporal , Esportes , Humanos , Masculino , Feminino , Regulação da Temperatura Corporal/fisiologia , Sudorese , Temperatura Cutânea , Exercício Físico/fisiologia , Temperatura Alta
9.
Drug Test Anal ; 14(5): 826-832, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34216436

RESUMO

The hematological module of the Athlete Biological Passport (ABP) is used for indirect detection of blood manipulations; however, the use of this method to detect doping, such as with microdoses of recombinant human erythropoietin (rhEPO), is problematic. For this reason, the sensitivity of ABP must be enhanced by implementing novel biomarkers. Here, we show that 5'-aminolevulinate synthase 2 (ALAS2) mRNAs are useful transcriptomic biomarkers to improve the indirect detection of rhEPO microdosing. Moreover, the sensitivity was sufficient to distinguish rhEPO administration from exposure to hypoxic conditions. Levels of mRNAs encoding carbonate anhydrase 1 (CA1) and solute carrier family 4 member 1 (SLC4A1) RNA, as well as the linear (L) and linear + circular (LC) forms of ALAS2 mRNA, were monitored for 16 days after rhEPO microdosing and during exposure to hypoxic conditions. ALAS2 mRNAs increased by 300% compared with the baseline values after rhEPO microdosing. Moreover, ALAS2 mRNAs were not significantly increased under hypoxic conditions. By contrast, CA1 mRNA was increased after both rhEPO microdosing and hypoxia, whereas SLC4A1 mRNA did not significantly increase under either condition. Furthermore, the analyses described here were performed using dried blood spots (DBSs), which provide advantages in terms of the sample collection, transport, and storage logistics. This study demonstrates that ALAS2 mRNA levels are sensitive and specific transcriptomic biomarkers for the detection of rhEPO microdosing using the hematological module of the ABP, and this method is compatible with the use of DBSs for anti-doping analyses.


Assuntos
Dopagem Esportivo , Eritropoetina , 5-Aminolevulinato Sintetase/genética , Biomarcadores , Dopagem Esportivo/métodos , Humanos , Hipóxia , RNA , RNA Mensageiro/genética , Proteínas Recombinantes
10.
Int J Sports Physiol Perform ; 16(10): 1416-1423, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33668015

RESUMO

PURPOSE: To investigate whether including heat and altitude exposures during an elite team-sport training camp induces similar or greater performance benefits. METHODS: The study assessed 56 elite male rugby players for maximal oxygen uptake, repeated-sprint cycling, and Yo-Yo intermittent recovery level 2 (Yo-Yo) before and after a 2-week training camp, which included 5 endurance and 5 repeated-sprint cycling sessions in addition to daily rugby training. Players were separated into 4 groups: (1) control (all sessions in temperate conditions at sea level), (2) heat training (endurance sessions in the heat), (3) altitude (repeated-sprint sessions and sleeping in hypoxia), and (4) combined heat and altitude (endurance in the heat, repeated sprints, and sleeping in hypoxia). RESULTS: Training increased maximal oxygen uptake (4% [10%], P = .017), maximal aerobic power (9% [8%], P < .001), and repeated-sprint peak (5% [10%], P = .004) and average power (12% [14%], P < .001) independent of training conditions. Yo-Yo distance increased (16% [17%], P < .001) but not in the altitude group (P = .562). Training in heat lowered core temperature and increased sweat rate during a heat-response test (P < .05). CONCLUSION: A 2-week intensified training camp improved maximal oxygen uptake, repeated-sprint ability, and aerobic performance in elite rugby players. Adding heat and/or altitude did not further enhance physical performance, and altitude appears to have been detrimental to improving Yo-Yo.


Assuntos
Altitude , Desempenho Atlético , Desempenho Atlético/fisiologia , Temperatura Alta , Humanos , Hipóxia , Masculino , Rugby
11.
Front Physiol ; 11: 613151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551839

RESUMO

To investigate the agreement between critical power (CP) and functional threshold power (FTP), 17 trained cyclists and triathletes (mean ± SD: age 31 ± 9 years, body mass 80 ± 10 kg, maximal aerobic power 350 ± 56 W, peak oxygen consumption 51 ± 10 mL⋅min-1⋅kg-1) performed a maximal incremental ramp test, a single-visit CP test and a 20-min time trial (TT) test in randomized order on three different days. CP was determined using a time-trial (TT) protocol of three durations (12, 7, and 3 min) interspersed by 30 min passive rest. FTP was calculated as 95% of 20-min mean power achieved during the TT. Differences between means were examined using magnitude-based inferences and a paired-samples t-test. Effect sizes are reported as Cohen's d. Agreement between CP and FTP was assessed using the 95% limits of agreement (LoA) method and Pearson correlation coefficient. There was a 91.7% probability that CP (256 ± 50 W) was higher than FTP (249 ± 44 W). Indeed, CP was significantly higher compared to FTP (P = 0.041) which was associated with a trivial effect size (d = 0.04). The mean bias between CP and FTP was 7 ± 13 W and LoA were -19 to 33 W. Even though strong correlations exist between CP and FTP (r = 0.969; P < 0.001), the chance of meaningful differences in terms of performance (1% smallest worthwhile change), were greater than 90%. With relatively large ranges for LoA between variables, these values generally should not be used interchangeably. Caution should consequently be exercised when choosing between FTP and CP for the purposes of performance analysis.

12.
Drug Test Anal ; 12(2): 261-267, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31655016

RESUMO

Erythroferrone (ERFE) is a glycoprotein hormone secreted by erythroblasts in response to erythropoietin stimulation. ERFE suppresses the hepatic synthesis of the master iron-regulatory hormone, hepcidin. The impact of erythropoiesis stimulation on ERFE secretion in humans is poorly understood. This paucity of information is due in part to the lack of available means for ERFE quantification in serum samples. The present study tested a new sensitive sandwich immunoassay for human ERFE. This assay was used to demonstrate that injection of various erythropoiesis stimulating agents (ESAs) increased the blood ERFE levels in healthy volunteers. After exogenous stimulation of erythropoiesis, ERFE increased up to 8-fold with a detection window of 13 days. The impact of one unit of blood withdrawal on erythropoiesis stimulation of ERFE was also tested. ERFE significantly increased after blood withdrawal in subjects injected with both iron and saline solution, suggesting that iron supplementation did not mask the ERFE increase after blood withdrawal. The effects of exercise-induced muscle damage on ERFE was assessed by comparing ERFE levels with creatine kinase levels in samples from subjects with heavy exercise loads, and determined that this was not a confounder. The ERFE assay is a sensitive means to investigate the connection between iron metabolism and erythropoiesis in humans, and to detect ESA abuse in the antidoping field.


Assuntos
Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Hematínicos/farmacologia , Hormônios Peptídicos/sangue , Peptídeos/farmacologia , Detecção do Abuso de Substâncias , Adulto , Biomarcadores/sangue , Eritropoetina/administração & dosagem , Exercício Físico , Hematínicos/administração & dosagem , Humanos , Injeções , Ferro/administração & dosagem , Ferro/farmacologia , Masculino , Peptídeos/administração & dosagem , Detecção do Abuso de Substâncias/métodos , Adulto Jovem
13.
Drug Test Anal ; 12(3): 323-330, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31889433

RESUMO

Exposure to either natural or simulated hypoxia induces hematological adaptations that may affect the parameters of the Athlete Biological Passport (ABP). The aim of the present study was to examine the effect of a novel, mixed hypoxic dose protocol on the likelihood of producing an atypical ABP finding. Ten well-trained middle-distance runners participated in a "live high, train low and high" (LHTLH) altitude training camp for 14 days. The participants spent ˜6 hr.d-1 at 3000-5400 m during waking hours and ˜10 h.d-1 overnight at 2400-3000 m simulated altitude. Venous blood samples were collected before (B0), and after 1 (D1), 4 (D4), 7 (D7), and 14 (D14) days of hypoxic exposure, and again 14 days post exposure (P14). Samples were analyzed for key parameters of the ABP including reticulocyte percentage (Ret%), hemoglobin concentration ([Hb]), and the OFF-score. The ABP adaptive model was administered at a specificity of 99% to test for atypical findings. We found significant changes in [Hb] and Ret% during the hypoxic intervention. Consequently, this led to ABP threshold deviations at 99% specificity in three participants. Only one of these was flagged as an "atypical passport finding" (ATPF) due to deviation of the OFF-score. When this sample was evaluated by ABP experts it was considered "normal". In conclusion, it is highly unlikely that the present hypoxic exposure protocol would have led to a citation for a doping violation according to WADA guidelines.


Assuntos
Altitude , Atletas , Dopagem Esportivo/métodos , Hipóxia/sangue , Ensino , Adulto , Estudos Cross-Over , Hemoglobinas/metabolismo , Humanos , Masculino , Contagem de Reticulócitos/estatística & dados numéricos , Método Simples-Cego , Fatores de Tempo , Adulto Jovem
14.
PLoS One ; 14(9): e0222487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536522

RESUMO

A high work of breathing can compromise limb oxygen delivery during sustained high-intensity exercise. However, it is unclear if the same is true for intermittent sprint exercise. This project examined the effect of adding an inspiratory load on locomotor muscle tissue reoxygenation during repeated-sprint exercise. Ten healthy males completed three experiment sessions of ten 10-s sprints, separated by 30-s of passive rest on a cycle ergometer. The first two sessions were "all-out' efforts performed without (CTRL) or with inspiratory loading (INSP) in a randomised and counterbalanced order. The third experiment session (MATCH) consisted of ten 10-s work-matched intervals. Tissue saturation index (TSI) and deoxy-haemoglobin (HHb) of the vastus lateralis and sixth intercostal space was monitored with near-infrared spectroscopy. Vastus lateralis reoxygenation (ΔReoxy) was calculated as the difference from peak HHb (sprint) to nadir HHb (recovery). Total mechanical work completed was similar between INSP and CTRL (effect size: -0.18, 90% confidence limit ±0.43), and differences in vastus lateralis TSI during the sprint (-0.01 ±0.33) and recovery (-0.08 ±0.50) phases were unclear. There was also no meaningful difference in ΔReoxy (0.21 ±0.37). Intercostal HHb was higher in the INSP session compared to CTRL (0.42 ±0.34), whilst the difference was unclear for TSI (-0.01 ±0.33). During MATCH exercise, differences in vastus lateralis TSI were unclear compared to INSP for both sprint (0.10 ±0.30) and recovery (-0.09 ±0.48) phases, and there was no meaningful difference in ΔReoxy (-0.25 ±0.55). Intercostal TSI was higher during MATCH compared to INSP (0.95 ±0.53), whereas HHb was lower (-1.09 ±0.33). The lack of difference in ΔReoxy between INSP and CTRL suggests that for intermittent sprint exercise, the metabolic O2 demands of both the respiratory and locomotor muscles can be met. Additionally, the similarity of the MATCH suggests that ΔReoxy was maximal in all exercise conditions.


Assuntos
Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Respiração , Corrida/fisiologia , Adulto , Hemoglobinas/análise , Humanos , Músculos Intercostais/metabolismo , Masculino , Músculo Quadríceps/metabolismo , Testes de Função Respiratória , Espectroscopia de Luz Próxima ao Infravermelho
15.
Artigo em Inglês | MEDLINE | ID: mdl-33344959

RESUMO

We examined the effect of running velocity upon magnitude and range of asymmetry in the main kinetics and kinematics of treadmill running at constant, submaximal velocities. Nine well-trained, un-injured distance runners ran, in a random order, at seven running velocities (10, 12.5, 15, 17.5, 20, 22.5, and 25 km.h-1) for 60 s (separated by > 90 s of rest) on an instrumented treadmill (ADAL3D-WR, Medical Development, France). Continuous measurement (1,000 Hz) of spatio-temporal, horizontal force production, and spring-mass characteristics was performed and data over 10 consecutive steps (5 right and 5 leg foot contacts after ~50 s of running) were used for subsequent comparisons. Group mean and the range of asymmetry scores were assessed from the "symmetry angle" (SA) formulae where a score of 0%/100% indicates perfect symmetry/asymmetry. Mean SA scores for spatio-temporal variables were lower than 2%: contact time (0.6 ± 0.1%; range: 0.4-0.7%), aerial time (1.7 ± 0.2%; range: 1.3-2.1%) as well as step length and step frequency (0.7 ± 0.2%; range: 0.5-0.9%). Mean loading rate (5.3 ± 1.1%; range: 4.1-6.9%) and spring mass model [peak vertical force: 3.2 ± 1.6% (range: 2.9-3.4%); maximal downward vertical displacement: 11.2 ± 6.0% (range: 9.2-14.0%); leg compression: 3.6 ± 1.9% (range: 2.9-5.6%); vertical stiffness: 8.8 ± 1.9% (range: 7.1-11.6%); leg stiffness: 1.6 ± 0.6% (range: 1.2-2.9%)] presented larger mean SA values. Mean SA scores ranged 1-4% for duration of braking (1.3 ± 0.3%; range: 0.9-2.0%) and push-off (1.6 ± 0.9%; range: 1.2-2.4%) phases, peak braking (2.4 ± 1.1%; range: 1.6-3.6%), and push-off (1.7 ± 0.9%; range: 1.2-2.2%) forces as well as braking (3.7 ± 2.0%; range: 2.8-5.8%) and push-off (2.1 ± 0.8%; range: 1.3-2.6%) impulses. However, with the exception of braking impulse (P = 0.005), there was no influence of running velocity on asymmetry scores for any of the mechanical variables studied (0.118

16.
Respir Physiol Neurobiol ; 260: 114-121, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30453086

RESUMO

This study aimed to investigate whether exercise hyperpnoea contributes to an impairment of locomotor muscle oxygenation and performance during repeated-sprint exercise in normoxia and hypoxia. Subjects performed ten 10-s sprints, separated by 30 s of passive rest while breathing either a normoxic (21% O2) or hypoxic (15% O2) gas mixture. Muscle oxygenation of the vastus lateralis and intercostal muscles was examined with near-infrared spectroscopy. Sprint and recovery vastus lateralis deoxyhaemoglobin was elevated in hypoxia by 9.2% (90% confidence interval 0.2 to 18.0) and 14.1% (90% CL 4.9 to 23.3%) compared to normoxia, respectively. There were no clear differences in respiratory muscle deoxyhaemoglobin (-0.1%, 90% CL -2.9 to 0.9%) or oxyhaemoglobin (0.9%, 90% CL -0.8 to 2.6%) between conditions. Maintenance of respiratory muscle oxygenation may contribute to the rise of vastus lateralis deoxyhaemoglobin in hypoxia during intermittent sprint cycling. This manuscript presents data which extends the fact that oxygen competition could be a limiting factor of exercise capacity.


Assuntos
Exercício Físico , Hipóxia/patologia , Oxigênio/administração & dosagem , Músculos Respiratórios/efeitos dos fármacos , Músculos Respiratórios/metabolismo , Adulto , Teste de Esforço , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Oxiemoglobinas/metabolismo , Método Simples-Cego , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
17.
J Appl Physiol (1985) ; 104(2): 328-37, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18048583

RESUMO

To evaluate the effect of intermittent hypobaric hypoxia combined with sea level training on exercise economy, 23 well-trained athletes (13 swimmers, 10 runners) were assigned to either hypobaric hypoxia (simulated altitude of 4,000-5,500 m) or normobaric normoxia (0-500 m) in a randomized, double-blind design. Both groups rested in a hypobaric chamber 3 h/day, 5 days/wk for 4 wk. Submaximal economy was measured twice before (Pre) and after (Post) the treatment period using sport-specific protocols. Economy was estimated both from the relationship between oxygen uptake (V(.-)o2) and speed, and from the absolute V(.-)o2 at each speed using sport-specific protocols. V(.-)o2 was measured during the last 60 s of each (3-4 min) stage using Douglas bags. Ventilation (V(.-)E), heart rate (HR), and capillary lactate concentration ([La(-)]) were measured during each stage. Velocity at maximal V(.-)o2 (velocity at V(.-)o2max) was used as a functional indicator of changes in economy. The average V(.-)o2 for a given speed of the Pre values was used for Post test comparison using a two-way, repeated-measures ANOVA. Typical error of measurement of V(.-)o2 was 4.7% (95% confidence limits 3.6-7.1), 3.6% (2.8-5.4), and 4.2% (3.2-6.9) for speeds 1, 2, and 3, respectively. There was no change in economy within or between groups (ANOVA interaction P = 0.28, P = 0.23, and P = 0.93 for speeds 1, 2, and 3). No differences in submaximal HR, [La-], Ve, or velocity at V(.-)o2(max) were found between groups. It is concluded that 4 wk of intermittent hypobaric hypoxia did not improve submaximal economy in this group of well-trained athletes.


Assuntos
Aclimatação , Altitude , Exercício Físico , Hipóxia/fisiopatologia , Músculo Esquelético/fisiopatologia , Consumo de Oxigênio , Corrida , Natação , Adulto , Método Duplo-Cego , Feminino , Frequência Cardíaca , Humanos , Hipóxia/metabolismo , Ácido Láctico/sangue , Masculino , Análise por Pareamento , Contração Muscular , Músculo Esquelético/metabolismo , Ventilação Pulmonar , Reprodutibilidade dos Testes , Fatores de Tempo
18.
Front Physiol ; 9: 643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928234

RESUMO

Existing doping detection strategies rely on direct and indirect biochemical measurement methods focused on detecting banned substances, their metabolites, or biomarkers related to their use. However, the goal of doping is to improve performance, and yet evidence from performance data is not considered by these strategies. The emergence of portable sensors for measuring exercise intensities and of player tracking technologies may enable the widespread collection of performance data. How these data should be used for doping detection is an open question. Herein, we review the basis by which performance models could be used for doping detection, followed by critically reviewing the potential of the critical power (CP) model as a prototypical performance model that could be used in this regard. Performance models are mathematical representations of performance data specific to the athlete. Some models feature parameters with physiological interpretations, changes to which may provide clues regarding the specific doping method. The CP model is a simple model of the power-duration curve and features two physiologically interpretable parameters, CP and W'. We argue that the CP model could be useful for doping detection mainly based on the predictable sensitivities of its parameters to ergogenic aids and other performance-enhancing interventions. However, our argument is counterbalanced by the existence of important limitations and unresolved questions that need to be addressed before the model is used for doping detection. We conclude by providing a simple worked example showing how it could be used and propose recommendations for its implementation.

19.
J Appl Physiol (1985) ; 103(5): 1523-35, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17690191

RESUMO

This double-blind, randomized, placebo-controlled trial examined the effects of 4 wk of resting exposure to intermittent hypobaric hypoxia (IHE, 3 h/day, 5 days/wk at 4,000-5,500 m) or normoxia combined with training at sea level on performance and maximal oxygen transport in athletes. Twenty-three trained swimmers and runners completed duplicate baseline time trials (100/400-m swims, or 3-km run) and measures for maximal oxygen uptake (VO(2max)), ventilation (VE(max)), and heart rate (HR(max)) and the oxygen uptake at the ventilatory threshold (VO(2) at VT) during incremental treadmill or swimming flume tests. Subjects were matched for sex, sport, performance, and training status and divided randomly between hypobaric hypoxia (Hypo, n = 11) and normobaric normoxia (Norm, n = 12) groups. All tests were repeated within the first (Post1) and third weeks (Post2) after the intervention. Time-trial performance did not improve in either group. We could not detect a significant difference between groups for a change in VO(2max), VE(max), HR(max), or VO(2) at VT after the intervention (group x test interaction P = 0.31, 0.24, 0.26, and 0.12, respectively). When runners and swimmers were considered separately, Hypo swimmers appeared to increase VO(2max) (+6.2%, interaction P = 0.07) at Post2 following a precompetition taper and increased VO(2) at VT (+8.9 and +12.1%, interaction P = 0.007 and 0.006, at Post1 and Post2). We conclude that this "dose" of IHE was not sufficient to improve performance or oxygen transport in this heterogeneous group of athletes. Whether there are potential benefits of this regimen for specific sports or training/tapering strategies may require further study.


Assuntos
Aclimatação , Altitude , Exercício Físico , Hipóxia/fisiopatologia , Músculo Esquelético/fisiopatologia , Corrida , Natação , Método Duplo-Cego , Feminino , Frequência Cardíaca , Humanos , Hipóxia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ventilação Pulmonar , Análise e Desempenho de Tarefas , Fatores de Tempo
20.
Front Physiol ; 8: 180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386237

RESUMO

Purpose: Develop a prediction equation for critical power (CP) and work above CP (W') in hypoxia for use in the work-balance ([Formula: see text]) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W' at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W' at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W' were used to compute W' during HIIT using differential ([Formula: see text]) and integral ([Formula: see text]) forms of the [Formula: see text] model. Results: CP decreased at altitude (P < 0.001) as described by 3rd order polynomial function (R2 = 0.99). W' decreased at 4,250 m only (P < 0.001). A double-linear function characterized the effect of altitude on W' (R2 = 0.99). There was no significant effect of parameter input (actual vs. predicted CP and W') on modelled [Formula: see text] at 2,250 m (P = 0.24). [Formula: see text] returned higher values than [Formula: see text] throughout HIIT (P < 0.001). During HIIT, [Formula: see text] was not different to 0 kJ at completion, at 250 m (0.7 ± 2.0 kJ; P = 0.33) and 2,250 m (-1.3 ± 3.5 kJ; P = 0.30). However, [Formula: see text] was lower than 0 kJ at 250 m (-0.9 ± 1.3 kJ; P = 0.058) and 2,250 m (-2.8 ± 2.8 kJ; P = 0.02). Conclusion: The altitude prediction equations for CP and W' developed in this study are suitable for use with the [Formula: see text] model in acute hypoxia. This enables the application of [Formula: see text] modelling to training prescription and competition analysis at altitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA