Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009627

RESUMO

The risk of low-back pain in manual material handling could potentially be reduced by back-support exoskeletons. Preferably, the level of exoskeleton support relates to the required muscular effort, and therefore should be proportional to the moment generated by trunk muscle activities. To this end, a regression-based prediction model of this moment could be implemented in exoskeleton control. Such a model must be calibrated to each user according to subject-specific musculoskeletal properties and lifting technique variability through several calibration tasks. Given that an extensive calibration limits the practical feasibility of implementing this approach in the workspace, we aimed to optimize the calibration for obtaining appropriate predictive accuracy during work-related tasks, i.e., symmetric lifting from the ground, box stacking, lifting from a shelf, and pulling/pushing. The root-mean-square error (RMSE) of prediction for the extensive calibration was 21.9 nm (9% of peak moment) and increased up to 35.0 nm for limited calibrations. The results suggest that a set of three optimally selected calibration trials suffice to approach the extensive calibration accuracy. An optimal calibration set should cover each extreme of the relevant lifting characteristics, i.e., mass lifted, lifting technique, and lifting velocity. The RMSEs for the optimal calibration sets were below 24.8 nm (10% of peak moment), and not substantially different than that of the extensive calibration.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Calibragem , Eletromiografia , Remoção , Região Lombossacral , Músculo Esquelético
2.
Artigo em Inglês | MEDLINE | ID: mdl-33799947

RESUMO

Occupational exoskeletons are becoming a concrete solution to mitigate work-related musculoskeletal disorders associated with manual material handling activities. The rationale behind this study is to search for common ground for exoskeleton evaluators to engage in dialogue with corporate Health & Safety professionals while integrating exoskeletons with their workers. This study suggests an innovative interpretation of the effect of a lower-back assistive exoskeleton and related performances that are built on the benefit delivered through reduced activation of the erector spinae musculature. We introduce the concept of "equivalent weight" as the weight perceived by the wearer, and use this to explore the apparent reduced effort needed when assisted by the exoskeleton. Therefore, thanks to this assistance, the muscles experience a lower load. The results of the experimental testing on 12 subjects suggest a beneficial effect for the back that corresponds to an apparent reduction of the lifted weight by a factor of 37.5% (the perceived weight of the handled objects is reduced by over a third). Finally, this analytical method introduces an innovative approach to quantify the ergonomic benefit introduced by the exoskeletons' assistance. This aims to assess the ergonomic risk to support the adoption of exoskeletons in the workplace.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Ergonomia , Humanos
3.
Wearable Technol ; 2: e12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38486626

RESUMO

Assistive strategies for occupational back-support exoskeletons have focused, mostly, on lifting tasks. However, in occupational scenarios, it is important to account not only for lifting but also for other activities. This can be done exploiting human activity recognition algorithms that can identify which task the user is performing and trigger the appropriate assistive strategy. We refer to this ability as exoskeleton versatility. To evaluate versatility, we propose to focus both on the ability of the device to reduce muscle activation (efficacy) and on its interaction with the user (dynamic fit). To this end, we performed an experimental study involving healthy subjects replicating the working activities of a manufacturing plant. To compare versatile and non-versatile exoskeletons, our device, XoTrunk, was controlled with two different strategies. Correspondingly, we collected muscle activity, kinematic variables and users' subjective feedbacks. Also, we evaluated the task recognition performance of the device. The results show that XoTrunk is capable of reducing muscle activation by up to in lifting and in carrying. However, the non-versatile control strategy hindered the users' natural gait (e.g., reduction of hip flexion), which could potentially lower the exoskeleton acceptance. Detecting carrying activities and adapting the control strategy, resulted in a more natural gait (e.g., increase of hip flexion). The classifier analyzed in this work, showed promising performance (online accuracy > 91%). Finally, we conducted 9 hours of field testing, involving four users. Initial subjective feedbacks on the exoskeleton versatility, are presented at the end of this work.

4.
Front Robot AI ; 7: 579963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501340

RESUMO

Occupational back-support exoskeletons are becoming a more and more common solution to mitigate work-related lower-back pain associated with lifting activities. In addition to lifting, there are many other tasks performed by workers, such as carrying, pushing, and pulling, that might benefit from the use of an exoskeleton. In this work, the impact that carrying has on lower-back loading compared to lifting and the need to select different assistive strategies based on the performed task are presented. This latter need is studied by using a control strategy that commands for constant torques. The results of the experimental campaign conducted on 9 subjects suggest that such a control strategy is beneficial for the back muscles (up to 12% reduction in overall lumbar activity), but constrains the legs (around 10% reduction in hip and knee ranges of motion). Task recognition and the design of specific controllers can be exploited by active and, partially, passive exoskeletons to enhance their versatility, i.e., the ability to adapt to different requirements.

5.
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 2053-2062, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32746325

RESUMO

Selecting actuators for assistive exoskeletons involves decisions in which designers usually face contrasting requirements. While certain choices may depend on the application context or design philosophy, it is generally desirable to avoid oversizing actuators in order to obtain more lightweight and transparent systems, ultimately promoting the adoption of a given device. In many cases, the torque and power requirements can be relaxed by exploiting the contribution of an elastic element acting in mechanical parallel. This contribution considers one such case and introduces a methodology for the evaluation of different actuator choices resulting from the combination of different motors, reduction gears, and parallel stiffness profiles, helping to match actuator capabilities to the task requirements. Such methodology is based on a graphical tool showing how different design choices affect the actuator as a whole. To illustrate the approach, a back-support exoskeleton for lifting tasks is considered as a case study.


Assuntos
Exoesqueleto Energizado , Desenho de Equipamento , Humanos , Aparelhos Ortopédicos , Torque
6.
IEEE Int Conf Rehabil Robot ; 2019: 559-564, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374689

RESUMO

Despite the growing interest, the adoption of industrial exoskeletons may still be held back by technical limitations. To enhance versatility and promote adoption, one aspect of interest could be represented by the potential of active and quasi-passive devices to automatically distinguish different activities and adjust their assistive profiles accordingly. This contribution focuses on an active back-support exoskeleton and extends previous work proposing the use of a Support Vector Machine to classify walking, bending and standing. Thanks to the introduction of a new feature-forearm muscle activity-this study shows that it is possible to perform reliable online classification. As a consequence, the authors introduce a new hierarchically-structured controller for the exoskeleton under analysis.


Assuntos
Exoesqueleto Energizado , Processamento de Sinais Assistido por Computador , Posição Ortostática , Máquina de Vetores de Suporte , Caminhada , Humanos , Aparelhos Ortopédicos
7.
IEEE Int Conf Rehabil Robot ; 2019: 625-630, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374700

RESUMO

Industrial active exoskeletons have recently achieved considerable interest, due to their intrinsic versatility compared to passive devices. To achieve this versatility, an important open challenge is the design of appropriate control strategies to automatically modulate the physical assistance according to the activity the user is performing.This work focuses on active back-support exoskeletons. To improve the assistance provided in dynamic situations with respect to state-of-the-art methods, a new strategy making use of the angular acceleration of the user's trunk is presented.The feasibility and effectiveness of the proposed strategy were tested experimentally on a prototype in a load handling task. The main advantages in terms of assistive torque profiles emerge during the transition phases of the movement (i.e. beginning and end of lowering and lifting) indicating an appropriate adaptation to the dynamics of the execution.In this preliminary evaluation, the data on peak muscular activity at the spine show promising trends, encouraging further developments and a more detailed evaluation.


Assuntos
Aceleração , Exoesqueleto Energizado , Tecnologia Assistiva , Humanos , Vértebras Lombares/fisiologia , Torque , Suporte de Carga
8.
J Biomech ; 91: 14-22, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31122661

RESUMO

With mechanical loading as the main risk factor for LBP, exoskeletons (EXO) are designed to reduce the load on the back by taking over part of the moment normally generated by back muscles. The present study investigated the effect of an active exoskeleton, controlled using three different control modes (INCLINATION, EMG & HYBRID), on spinal compression forces during lifting with various techniques. Ten healthy male subjects lifted a 15 kg box, with three lifting techniques (free, squat & stoop), each of which was performed four times, once without EXO and once each with the three different control modes. Using inverse dynamics, we calculated L5/S1 joint moments. Subsequently, we estimated spine forces using an EMG-assisted trunk model. Peak compression forces substantially decreased by 17.8% when wearing the EXO compared to NO EXO. However, this reduction was partly, by about one third, attributable to a reduction of 25% in peak lifting speed when wearing the EXO. While subtle differences in back load patterns were seen between the three control modes, no differences in peak compression forces were found. In part, this may be related to limitations in the torque generating capacity of the EXO. Therefore, with the current limitations of the motors it was impossible to determine which of the control modes was best. Despite these limitations, the EXO still reduced both peak and cumulative compression forces by about 18%.


Assuntos
Exoesqueleto Energizado , Remoção , Adolescente , Adulto , Dorso/fisiologia , Fenômenos Biomecânicos , Eletromiografia/métodos , Humanos , Masculino , Postura/fisiologia , Coluna Vertebral/fisiologia , Torque , Suporte de Carga/fisiologia , Adulto Jovem
10.
Appl Ergon ; 68: 125-131, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29409626

RESUMO

The aim of this study was to evaluate the effect of an industrial exoskeleton on muscle activity, perceived musculoskeletal effort, measured and perceived contact pressure at the trunk, thighs and shoulders, and subjective usability for simple sagittal plane lifting and lowering conditions. Twelve male participants lifted and lowered a box of 7.5 kg and 15 kg, respectively, from mid-shin height to waist height, five times, both with and without the exoskeleton. The device significantly reduced muscle activity of the Erector Spinae (12%-15%) and Biceps Femoris (5%). Ratings of perceived musculoskeletal effort in the trunk region were significantly less with the device (9.5%-11.4%). The measured contact pressure was highest on the trunk (91.7 kPa-93.8 kPa) and least on shoulders (47.6 kPa-51.7 kPa), whereas pressure was perceived highest on the thighs (35-44% of Max LPP). Six of the users rated the device usability as acceptable. The exoskeleton reduced musculoskeletal loading on the lower back and assisted with hip extensor torque during lifting and lowering. Contact pressures fell below the Pain Pressure Threshold. Perceived pressure was not exceptionally high, but sufficiently high to cause discomfort if used for long durations.


Assuntos
Músculos do Dorso/fisiologia , Exoesqueleto Energizado , Músculos Isquiossurais/fisiologia , Remoção , Análise e Desempenho de Tarefas , Adulto , Fenômenos Biomecânicos , Voluntários Saudáveis , Humanos , Masculino , Ombro/fisiologia , Torque , Suporte de Carga/fisiologia
11.
Front Robot AI ; 5: 53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500935

RESUMO

Active exoskeletons are potentially more effective and versatile than passive ones, but designing them poses a number of additional challenges. An important open challenge in the field is associated to the assistive strategy, by which the actuation forces are modulated to the user's needs during the physical activity. This paper addresses this challenge on an active exoskeleton prototype aimed at reducing compressive low-back loads, associated to risk of musculoskeletal injury during manual material handling (i.e., repeatedly lifting objects). An analysis of the biomechanics of the physical task reveals two key factors that determine low-back loads. For each factor, a suitable control strategy for the exoskeleton is implemented. The first strategy is based on user posture and modulates the assistance to support the wearer's own upper body. The second one adapts to the mass of the lifted object and is a practical implementation of electromyographic control. A third strategy is devised as a generalized combination of the first two. With these strategies, the proposed exoskeleton can quickly adjust to different task conditions (which makes it versatile compared to using multiple, task-specific, devices) as well as to individual preference (which promotes user acceptance). Additionally, the presented implementation is potentially applicable to more powerful exoskeletons, capable of generating larger forces. The different strategies are implemented on the exoskeleton and tested on 11 participants in an experiment reproducing the lifting task. The resulting data highlights that the strategies modulate the assistance as intended by design, i.e., they effectively adjust the commanded assistive torque during operation based on user posture and external mass. The experiment also provides evidence of significant reduction in muscular activity at the lumbar spine (around 30%) associated to using the exoskeleton. The reduction is well in line with previous literature and may be associated to lower risk of injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA