RESUMO
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.
Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Poliubiquitina/metabolismo , Processamento de Proteína Pós-Traducional , Fator de Transcrição Sp1/metabolismo , Proteína com Valosina/metabolismo , Adulto , Idoso , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fator de Transcrição Sp1/genética , Ubiquitinação , Proteína com Valosina/genéticaRESUMO
Neuropsychiatric diseases (NPD) represent a significant global disease burden necessitating innovative approaches to pathogenic understanding, biomarker identification and therapeutic strategy. Emerging evidence implicates heart/brain axis malfunction in NPD etiology, particularly via the autonomic nervous system (ANS) and brain central autonomic network (CAN) interaction. This heart/brain inter-relationship harbors potentially novel NPD diagnosis and treatment avenues. Nevertheless, the lack of multidisciplinary clinical approaches as well as a limited appreciation of molecular underpinnings has stymied progress. Large-scale preclinical multi-systemic functional data can therefore provide supplementary insight into CAN and ANS interaction. We here present an overview of the heart/brain axis in NPD and establish a unique rationale for utilizing a preclinical cardiovascular disease risk gene set to glean insights into heart/brain axis control in NPD. With a top-down approach focusing on genes influencing electrocardiogram ANS function, we combined hierarchical clustering of corresponding regional CAN expression data and functional enrichment analysis to reveal known and novel molecular insights into CAN and NPD. Through 'support vector machine' inquiries for classification and literature validation, we further pinpointed the top 32 genes highly expressed in CAN brain structures altering both heart rate/heart rate variability (HRV) and behavior. Our observations underscore the potential of HRV/hyperactivity behavior as endophenotypes for multimodal disease biomarker identification to index aberrant executive brain functioning with relevance for NPD. This work heralds the potential of large-scale preclinical functional genetic data for understanding CAN/ANS control and introduces a stepwise design leveraging preclinical data to unearth novel heart/brain axis control genes in NPD.
Assuntos
Insuficiência Cardíaca , Coração , Humanos , Encéfalo , Sistema Nervoso Autônomo/fisiologia , BiomarcadoresRESUMO
OBJECTIVE: Precursors of peptide hormones undergo posttranslational modifications within the trans-Golgi network (TGN). Dysfunction of proteins involved at different steps of this process cause several complex syndromes affecting the central nervous system (CNS). We aimed to clarify the genetic cause in a group of patients characterized by hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy. METHODS: Whole exome sequencing was performed in seven individuals of six unrelated families with these features. Postmortem histopathological and HID1 expression analysis of brain tissue and pituitary gland were conducted in one patient. Functional consequences of the homozygous HID1 variant p.R433W were investigated by Seahorse XF Assay in fibroblasts of two patients. RESULTS: Bi-allelic variants in the gene HID1 domain-containing protein 1 (HID1) were identified in all patients. Postmortem examination confirmed cerebral atrophy with enlarged lateral ventricles. Markedly reduced expression of pituitary hormones was found in pituitary gland tissue. Colocalization of HID1 protein with the TGN was not altered in fibroblasts of patients compared to controls, while the extracellular acidification rate upon stimulation with potassium chloride was significantly reduced in patient fibroblasts compared to controls. INTERPRETATION: Our findings indicate that mutations in HID1 cause an early infantile encephalopathy with hypopituitarism as the leading presentation, and expand the list of syndromic CNS diseases caused by interference of TGN function. ANN NEUROL 2021;90:149-164.
Assuntos
Encefalopatias/genética , Epilepsia/genética , Hipopituitarismo/genética , Alelos , Encefalopatias/patologia , Pré-Escolar , Epilepsia/patologia , Feminino , Humanos , Hipopituitarismo/patologia , Lactente , Masculino , Hipófise/patologia , Sequenciamento do Exoma , Adulto JovemRESUMO
Parkin, a RING-between-RING-type E3 ubiquitin ligase associated with Parkinson's disease, has a wide neuroprotective activity, preventing cell death in various stress paradigms. We identified a stress-protective pathway regulated by parkin that links NF-κB signaling and mitochondrial integrity via linear ubiquitination. Under cellular stress, parkin is recruited to the linear ubiquitin assembly complex and increases linear ubiquitination of NF-κB essential modulator (NEMO), which is essential for canonical NF-κB signaling. As a result, the mitochondrial guanosine triphosphatase OPA1 is transcriptionally upregulated via NF-κB-responsive promoter elements for maintenance of mitochondrial integrity and protection from stress-induced cell death. Parkin-induced stress protection is lost in the absence of either NEMO or OPA1, but not in cells defective for the mitophagy pathway. Notably, in parkin-deficient cells linear ubiquitination of NEMO, activation of NF-κB, and upregulation of OPA1 are significantly reduced in response to TNF-α stimulation, supporting the physiological relevance of parkin in regulating this antiapoptotic pathway.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Animais , Apoptose , Fibroblastos/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais , Transfecção , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.
Assuntos
Apoptose , Coenzima A Ligases/metabolismo , Glutationa Peroxidase/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/deficiência , Feminino , Glutationa Peroxidase/deficiência , Humanos , Hipoglicemiantes/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Necrose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Tiazolidinedionas/farmacologiaRESUMO
Sequence variations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to an increased risk for neurodegenerative disorders such as Alzheimer's disease and frontotemporal lobar degeneration. In the brain, TREM2 is predominantly expressed in microglia. Several disease-associated TREM2 variants result in a loss of function by reducing microglial phagocytosis, impairing lipid sensing, preventing binding of lipoproteins and affecting shielding of amyloid plaques. We here investigate the consequences of TREM2 loss of function on the microglia transcriptome. Among the differentially expressed messenger RNAs in wild-type and Trem2-/- microglia, gene clusters are identified which represent gene functions in chemotaxis, migration and mobility. Functional analyses confirm that loss of TREM2 impairs appropriate microglial responses to injury and signals that normally evoke chemotaxis on multiple levels. In an ex vivo organotypic brain slice assay, absence of TREM2 reduces the distance migrated by microglia. Moreover, migration towards defined chemo-attractants is reduced upon ablation of TREM2 and can be rescued by TREM2 re-expression. In vivo, microglia lacking TREM2 migrate less towards injected apoptotic neurons, and outgrowth of microglial processes towards sites of laser-induced focal CNS damage in the somatosensory cortex is slowed. The apparent lack of chemotactic stimulation upon depletion of TREM2 is consistent with a stable expression profile of genes characterizing the homoeostatic signature of microglia.
Assuntos
Quimiotaxia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Microglia/fisiologia , Neurônios/patologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Células Cultivadas , Demência Frontotemporal , Perfilação da Expressão Gênica , Humanos , Mutação com Perda de Função , Células Mieloides , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , FagocitoseRESUMO
The proteasome is an intracellular protease complex consisting of the 20S catalytic core and its associated regulators, including the 19S complex, PA28αß, PA28γ, PA200, and PI31. Inhibition of the proteasome induces autoregulatory de novo formation of 20S and 26S proteasome complexes. Formation of alternative proteasome complexes, however, has not been investigated so far. We here show that catalytic proteasome inhibition results in fast recruitment of PA28γ and PA200 to 20S and 26S proteasomes within 2-6 h. Rapid formation of alternative proteasome complexes did not involve transcriptional activation of PA28γ and PA200 but rather recruitment of preexisting activators to 20S and 26S proteasome complexes. Recruitment of proteasomal activators depended on the extent of active site inhibition of the proteasome with inhibition of ß5 active sites being sufficient for inducing recruitment. Moreover, specific inhibition of 26S proteasome activity via siRNA-mediated knockdown of the 19S subunit RPN6 induced recruitment of only PA200 to 20S proteasomes, whereas PA28γ was not mobilized. Here, formation of alternative PA200 complexes involved transcriptional activation of the activator. Alternative proteasome complexes persisted when cells had regained proteasome activity after pulse exposure to proteasome inhibitors. Knockdown of PA28γ sensitized cells to proteasome inhibitor-mediated growth arrest. Thus, formation of alternative proteasome complexes appears to be a formerly unrecognized but integral part of the cellular response to impaired proteasome function and altered proteostasis.
Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Autoantígenos/metabolismo , Bortezomib/farmacologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/metabolismo , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Multimerização Proteica , Transcrição GênicaRESUMO
BACKGROUND: As CRISPR/Cas9 mediated screens with pooled guide libraries in somatic cells become increasingly established, an unmet need for rapid and accurate companion informatics tools has emerged. We have developed a lightweight and efficient software to easily manipulate large raw next generation sequencing datasets derived from such screens into informative relational context with graphical support. The advantages of the software entitled ENCoRE (Easy NGS-to-Gene CRISPR REsults) include a simple graphical workflow, platform independence, local and fast multithreaded processing, data pre-processing and gene mapping with custom library import. RESULTS: We demonstrate the capabilities of ENCoRE to interrogate results from a pooled CRISPR cellular viability screen following Tumor Necrosis Factor-alpha challenge. The results not only identified stereotypical players in extrinsic apoptotic signaling but two as yet uncharacterized members of the extrinsic apoptotic cascade, Smg7 and Ces2a. We further validated and characterized cell lines containing mutations in these genes against a panel of cell death stimuli and involvement in p53 signaling. CONCLUSIONS: In summary, this software enables bench scientists with sensitive data or without access to informatic cores to rapidly interpret results from large scale experiments resulting from pooled CRISPR/Cas9 library screens.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose , Sistemas CRISPR-Cas , Sequenciamento de Nucleotídeos em Larga Escala , Software , Animais , Linhagem Celular , Camundongos , MutaçãoRESUMO
The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43(A315TKi) mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43(A315TKi) animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Mitocôndrias/patologia , Alelos , Esclerose Lateral Amiotrófica/genética , Animais , Comportamento Animal , Glicemia/metabolismo , Peso Corporal , Antígenos CD36/metabolismo , HDL-Colesterol/metabolismo , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Ácidos Graxos/metabolismo , Feminino , Técnicas de Introdução de Genes , Genoma , Genótipo , Heterozigoto , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Since their discovery in the early 1990s, microRNAs have emerged as key components of the post-transcriptional regulation of gene expression. MicroRNAs occur in the plant and animal kingdoms, with the numbers of microRNAs encoded in the genome increasing together with the evolutionary expansion of the phyla. By base-pairing with complementary sequences usually located within the 3' untranslated region, microRNAs target mRNAs for degradation, destabilization and/or translational inhibition. Because one microRNA can have many, if not hundreds, of target mRNAs and because one mRNA can, in turn, be targeted by many microRNAs, these small single-stranded RNAs can exert extensive pleiotropic functions during the development, adulthood and ageing of an organism. Specific functions of an increasing number of microRNAs have been described for the invertebrate and vertebrate nervous systems. Among these, the miR-8/miR-200 microRNA family has recently emerged as an important regulator of neurogenesis and gliogenesis and of adult neural homeostasis in the central nervous system of fruit flies, zebrafish and rodents. This highly conserved microRNA family consists of a single ortholog in the fruit fly (miR-8) and five members in vertebrates (miR-200a, miR-200b, miR-200c, miR-141 and miR-429). Here, we review our current knowledge about the functions of the miR-8/miR-200 microRNA family during invertebrate and vertebrate neural development and adult homeostasis and, in particular, about their role in the regulation of neural stem/progenitor cell proliferation, cell cycle exit, transition to a neural precursor/neuroblast state, neuronal differentiation and cell survival and during glial cell growth and differentiation into mature oligodendrocytes.
Assuntos
Sequência Conservada , Invertebrados/genética , MicroRNAs/metabolismo , Neurogênese/genética , Vertebrados/genética , Animais , Sequência de Bases , Evolução Molecular , MicroRNAs/genética , Dados de Sequência MolecularRESUMO
Members of the transforming growth factor (TGF)-ß family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-ß signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF-ß1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF-ß1 under a tetracycline regulatable Ca-Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF-ß1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF-ß1 signalling in adult NPCs. The results demonstrate that TGF-ß1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF-ß1 in ageing and neurodegenerative diseases, TGF-ß1 signalling presents a molecular target for future interventions in such conditions.
Assuntos
Diferenciação Celular , Hipocampo/citologia , Neurogênese/fisiologia , Neurônios/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Senescência Celular , Proteína Duplacortina , Eletrofisiologia , Feminino , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/genéticaRESUMO
Stress has been identified as a major causal factor for many mental disorders. However, our knowledge about the chain of molecular and cellular events translating stress experience into altered behavior is still rather scant. Here, we have characterized a murine ortholog of the putative tumor suppressor gene DRR1 as a unique stress-induced protein in brain. It binds to actin, promotes bundling and stabilization of actin filaments, and impacts on actin-dependent neurite outgrowth. Endogenous DRR1 localizes to some, but not all, synapses, with preference for the presynaptic region. Hippocampal virus-mediated enhancement of DRR1 expression reduced spine density, diminished the probability of synaptic glutamate release, and altered cognitive performance. DRR1 emerges as a protein to link stress with actin dynamics, which in addition is able to act on synaptic function and cognition.
Assuntos
Cognição/fisiologia , Sinapses/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Actinas/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Genes Supressores de Tumor , Células HEK293 , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuritos/metabolismo , Neuritos/ultraestrutura , Ligação Proteica , Estresse Fisiológico , Proteínas Supressoras de Tumor/genéticaRESUMO
Ferroptosis, marked by iron-dependent lipid peroxidation, may present an Achilles heel for the treatment of cancers. Ferroptosis suppressor protein-1 (FSP1), as the second ferroptosis mainstay, efficiently prevents lipid peroxidation via NAD(P)H-dependent reduction of quinones. Because its molecular mechanisms have remained obscure, we studied numerous FSP1 mutations present in cancer or identified by untargeted random mutagenesis. This mutational analysis elucidates the FAD/NAD(P)H-binding site and proton-transfer function of FSP1, which emerged to be evolutionarily conserved among different NADH quinone reductases. Using random mutagenesis screens, we uncover the mechanism of action of next-generation FSP1 inhibitors. Our studies identify the binding pocket of the first FSP1 inhibitor, iFSP1, and introduce the first species-independent FSP1 inhibitor, targeting the NAD(P)H-binding pocket. Conclusively, our study provides new insights into the molecular functions of FSP1 and enables the rational design of FSP1 inhibitors targeting cancer cells.
Assuntos
Ferroptose , Ferroptose/genética , NAD , Mutação , Mutagênese , Sítios de Ligação , PrótonsRESUMO
Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the α-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD.
Assuntos
Células-Tronco Neurais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Células-Tronco Neurais/metabolismo , Seguimentos , Neurônios Dopaminérgicos/metabolismo , Progressão da DoençaRESUMO
BACKGROUND: MicroRNAs (miRNAs) are post-transcriptional regulators involved in numerous biological processes including the pathogenesis of Alzheimer's disease (AD). A key gene of AD, ADAM10, controls the proteolytic processing of APP and the formation of the amyloid plaques and is known to be regulated by miRNA in hepatic cancer cell lines. To predict miRNAs regulating ADAM10 expression concerning AD, we developed a computational approach. METHODS: MiRNA binding sites in the human ADAM10 3' untranslated region were predicted using the RNA22, RNAhybrid and miRanda programs and ranked by specific selection criteria with respect to AD such as differential regulation in AD patients and tissue-specific expression. Furthermore, target genes of miR-103, miR-107 and miR-1306 were derived from six publicly available miRNA target site prediction databases. Only target genes predicted in at least four out of six databases in the case of miR-103 and miR-107 were compared to genes listed in the AlzGene database including genes possibly involved in AD. In addition, the target genes were used for Gene Ontology analysis and literature mining. Finally, we used a luciferase assay to verify the potential effect of these three miRNAs on ADAM10 3'UTR in SH-SY5Y cells. RESULTS: Eleven miRNAs were selected, which have evolutionary conserved binding sites. Three of them (miR-103, miR-107, miR-1306) were further analysed as they are linked to AD and most strictly conserved between different species. Predicted target genes of miR-103 (p-value = 0.0065) and miR-107 (p-value = 0.0009) showed significant overlap with the AlzGene database except for miR-1306. Interactions between miR-103 and miR-107 to genes were revealed playing a role in processes leading to AD. ADAM10 expression in the reporter assay was reduced by miR-1306 (28%), miR-103 (45%) and miR-107 (52%). CONCLUSIONS: Our approach shows the requirement of incorporating specific, disease-associated selection criteria into the prediction process to reduce the amount of false positive predictions. In summary, our method identified three miRNAs strongly suggested to be involved in AD, which possibly regulate ADAM10 expression and hence offer possibilities for the development of therapeutic treatments of AD.
Assuntos
Regiões 3' não Traduzidas/genética , Proteínas ADAM/genética , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Biologia Computacional , Regulação da Expressão Gênica , Proteínas de Membrana/genética , MicroRNAs/genética , Neuroblastoma/genética , Proteína ADAM10 , Doença de Alzheimer/metabolismo , Humanos , Luciferases/metabolismo , MicroRNAs/metabolismo , Neuroblastoma/metabolismo , Células Tumorais CultivadasRESUMO
Parkinson's disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by increased Sonic Hedgehog (SHH) signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction may be required for the development of pathoetiological phenotypes observed in sPD like mitochondrial dysfunction. Inhibiting overactive SHH signaling may be a potential neuroprotective therapy for sPD.
Assuntos
Proteínas Hedgehog , Células-Tronco Neurais , Doença de Parkinson , Animais , Cílios/metabolismo , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de SinaisRESUMO
The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.
Assuntos
Células Precursoras de Oligodendrócitos , Animais , Encéfalo , Gliose/metabolismo , Imunidade Inata , Células Precursoras de Oligodendrócitos/metabolismo , Peixe-ZebraRESUMO
Increased vulnerability to aversive experiences is one of the main risk factors for stress-related psychiatric disorders as major depression. However, the molecular bases of vulnerability, on the one hand, and stress resilience, on the other hand, are still not understood. Increasing clinical and preclinical evidence suggests a central involvement of the glutamatergic system in the pathogenesis of major depression. Using a mouse paradigm, modeling increased stress vulnerability and depression-like symptoms in a genetically diverse outbred strain, and we tested the hypothesis that differences in AMPA receptor function may be linked to individual variations in stress vulnerability. Vulnerable and resilient animals differed significantly in their dorsal hippocampal AMPA receptor expression and AMPA receptor binding. Treatment with an AMPA receptor potentiator during the stress exposure prevented the lasting effects of chronic social stress exposure on physiological, neuroendocrine, and behavioral parameters. In addition, spatial short-term memory, an AMPA receptor-dependent behavior, was found to be predictive of individual stress vulnerability and response to AMPA potentiator treatment. Finally, we provide evidence that genetic variations in the AMPA receptor subunit GluR1 are linked to the vulnerable phenotype. Therefore, we propose genetic variations in the AMPA receptor system to shape individual stress vulnerability. Those individual differences can be predicted by the assessment of short-term memory, thereby opening up the possibility for a specific treatment by enhancing AMPA receptor function.
Assuntos
Testes Genéticos/métodos , Hipocampo/metabolismo , Individualidade , Memória de Curto Prazo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Estresse Psicológico/metabolismo , Animais , Corticosterona/sangue , Transtorno Depressivo Maior/etiologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise Serial de Proteínas/métodos , Receptores de AMPA/agonistas , Receptores de AMPA/genética , Resiliência Psicológica/efeitos dos fármacos , Fatores de Risco , Estresse Psicológico/sangue , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Sulfonamidas/farmacologiaRESUMO
The H1 haplotype of the microtubule-associated protein tau (MAPT) gene is a common genetic risk factor for some neurodegenerative diseases such as progressive supranuclear palsy, corticobasal degeneration, and Parkinson's disease. The molecular mechanism causing the increased risk for the named diseases, however, remains unclear. In this paper, we present a valuable tool of eight small molecule neural precursor cell lines (smNPC) homozygous for the MAPT haplotypes (four H1/H1 and four H2/H2 cell lines), which can be used to identify MAPT-dependent phenotypes. The employed differentiation protocol is fast due to overexpression of NEUROGENIN-2 and therefore suitable for high-throughput approaches. A basic characterization of all human cell lines was performed, and their TAU and α-SYNUCLEIN profiles were compared during a differentiation time of 30 days. We could identify higher levels of conformationally altered TAU in cell lines carrying the H2 haplotype. Additionally, we found increased expression levels of α-SYNUCLEIN in H1/H1 cells. With this resource, we aim to fill a gap in neurodegenerative disease modeling with induced pluripotent stem cells (iPSC) for sporadic tauopathies.
RESUMO
BACKGROUND: The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. RESULTS: Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN), 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2) and amyloid ß (A4) precursor protein (APP) were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. CONCLUSIONS: This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP) and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.