Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Pain ; 14: 100134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099285

RESUMO

Several gaps in knowledge exists in our understanding of orofacial pain. Some of these include type of peripheral sensory innervation in specific tissues, differences in innervation between sexes and validation of rodent studies in higher order species. The current study addresses these gaps by validating mouse studies for sensory innervation of tongue tissue in non-human primates as well as assesses sex-specific differences. Tongue and trigeminal ganglia were collected from naïve male and female marmosets and tested for nerve fibers using specific markers by immunohistochemistry and number of fibers quantified. We also tested whether specific subgroups of nerve fibers belonged to myelinating or non-myelinating axons. We observed that similar to findings in mice, marmoset tongue was innervated with nerve filaments expressing nociceptor markers like CGRP and TRPV1 as well as non-nociceptor markers like TrkB, parvalbumin (PV) and tyrosine hydroxylase (TH). Furthermore, we found that while portion of TrkB and PV may be sensory fibers, TH-positive fibers were primarily sympathetic nerve fibers. Moreover, number of CGRP, TrkB and TH-positive nerve fibers were similar in both sexes. However, we observed a higher proportion of myelinated TRPV1 positive fibers in females than in males as well as increased number of PV + fibers in females. Taken together, the study for the first time characterizes sensory innervation in non-human primates as well as evaluates sex-differences in innervation of tongue tissue, thereby laying the foundation for future orofacial pain research with new world smaller NHPs like the common marmoset.

2.
Sci Rep ; 13(1): 23062, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155190

RESUMO

Myogenous temporomandibular disorders is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate-common marmosets. Sensory nerves were localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were primarily innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and lowest in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD and CHRNA3, a silent nociceptive marker. TrpV1 was register in 17% of LPM nerves. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. MM, TM and LPM NFH+ fibers contained different percentages of trkC+ and parvalbumin+, but not trkB+ fibers. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have similarities and differences in innervation patterns.


Assuntos
Callithrix , Músculos Pterigoides , Animais , Músculos Pterigoides/inervação , Peptídeo Relacionado com Gene de Calcitonina , Músculos da Mastigação , Músculo Masseter/inervação
3.
Sci Rep ; 11(1): 17813, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497285

RESUMO

Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.


Assuntos
Hormônio do Crescimento/metabolismo , Dor/metabolismo , Pró-Opiomelanocortina/metabolismo , Prolactina/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Camundongos Transgênicos , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Gânglio Trigeminal/citologia
4.
Nat Metab ; 3(6): 762-773, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140694

RESUMO

Chronic pain is the leading cause of disability worldwide1 and is commonly associated with comorbid disorders2. However, the role of diet in chronic pain is poorly understood. Of particular interest is the Western-style diet, enriched with ω-6 polyunsaturated fatty acids (PUFAs) that accumulate in membrane phospholipids and oxidise into pronociceptive oxylipins3,4. Here we report that mice administered an ω-6 PUFA-enriched diet develop persistent nociceptive hypersensitivities, spontaneously active and hyper-responsive glabrous afferent fibres and histologic markers of peripheral nerve damage reminiscent of a peripheral neuropathy. Linoleic and arachidonic acids accumulate in lumbar dorsal root ganglia, with increased liberation via elevated phospholipase (PLA)2 activity. Pharmacological and molecular inhibition of PLA2G7 or diet reversal with high levels of ω-3 PUFAs attenuate nociceptive behaviours, neurophysiologic abnormalities and afferent histopathology induced by high ω-6 intake. Additionally, ω-6 PUFA accumulation exacerbates allodynia observed in preclinical inflammatory and neuropathic pain models and is strongly correlated with multiple pain indices of clinical diabetic neuropathy. Collectively, these data reveal dietary enrichment with ω-6 PUFAs as a new aetiology of peripheral neuropathy and risk factor for chronic pain and implicate multiple therapeutic considerations for clinical pain management.


Assuntos
Biomarcadores , Dor Crônica/etiologia , Dor Crônica/metabolismo , Suscetibilidade a Doenças , Ácidos Graxos Ômega-6/metabolismo , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Dieta , Modelos Animais de Doenças , Ácidos Graxos Insaturados/metabolismo , Gânglios Espinais/metabolismo , Metabolismo dos Lipídeos , Camundongos , Fosfolipases A2/metabolismo , Fatores de Risco
5.
Eur J Pharm Biopharm ; 103: 109-117, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27020530

RESUMO

Formulating vaccines into a dry form enhances its thermal stability. This is critical to prevent administering damaged and ineffective vaccines, and to reduce its final cost. A number of vaccines in the market as well as those being evaluated in the clinical setting are in a dry solid state; yet none of these vaccines have achieved long-term stability at high temperatures. We used spray-drying to formulate a recombinant live attenuated Listeria monocytogenes (Lm; expressing Francisella tularensis immune protective antigen pathogenicity island protein IglC) bacterial vaccine into a thermostable dry powder using various sugars and an amino acid. Lm powder vaccine showed minimal loss in viability when stored for more than a year at ambient room temperature (∼23°C) or for 180days at 40°C. High temperature viability was achieved by maintaining an inert atmosphere in the storage container and removing oxygen free radicals that damage bacterial membranes. Further, in vitro antigenicity was confirmed by infecting a dendritic cell line with cultures derived from spray dried Lm and detection of an intracellularly expressed protective antigen. A combination of stabilizing excipients, a cost effective one-step drying process, and appropriate storage conditions could provide a viable option for producing, storing and transporting heat-sensitive vaccines, especially in regions of the world that require them the most.


Assuntos
Vacinas Bacterianas/biossíntese , Listeria monocytogenes/imunologia , Vacinas Bacterianas/imunologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA