RESUMO
Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK-SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150â µm × 150â µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000â eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed.
RESUMO
The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.
Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malária Falciparum/prevenção & controle , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêuticoRESUMO
BACKGROUND: In 2012, seasonal malaria chemoprevention (SMC) was recommended as policy for malaria control by the World Health Organization (WHO) in areas of highly seasonal malaria transmission across the Sahel sub-region in Africa along with monitoring of drug resistance. We assessed the long-term impact of SMC on Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) over a 3-year period of SMC implementation in the health district of Ouelessebougou, Mali. METHODS: In 8 randomly selected sub-districts of Ouelessebougou, Mali, children aged 0-5 years were randomly selected during cross-sectional surveys at baseline (August 2014) and 1, 2 and 3 years post-SMC, at the beginning and end of the malaria transmission season. Blood smears and blood spots on filter paper were obtained and frequencies of mutation in P. falciparum genes related to resistance to SP and AQ (Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt) were assessed by PCR amplification on individual samples and PCR amplification followed by deep sequencing on pooled (by site and year) samples. RESULTS: At each survey, approximately 50-100 individual samples were analysed by PCR amplification and a total of 1,164 samples were analysed by deep sequencing with an average read depth of 18,018-36,918 after pooling by site and year. Most molecular markers of resistance did not increase in frequency over the period of study (2014-2016). After 3 years of SMC, the frequencies of Pfdhps 540E, Pfdhps 437G and Pfcrt K76T remained similar compared to baseline (4.0 vs 1.4%, p = 0.41; 74.5 vs 64.6%, p = 0.22; 71.3 vs 67.4%, p = 0.69). Nearly all samples tested carried Pfdhfr 59R, and this proportion remained similar 3 years after SMC implementation (98.8 vs 100%, p = 1). The frequency of Pfmdr1 N86Y increased significantly over time from 5.6% at baseline to 18.6% after 3 years of SMC (p = 0.016). Results of pooled analysis using deep sequencing were consistent with those by individual analysis with standard PCR, but also indicated for the first time the presence of mutations at the Pfdhps A581G allele at a frequency of 11.7% after 2 years of SMC, as well as the Pfdhps I431V allele at frequencies of 1.6-9.3% following 1 and 2 years of SMC, respectively. CONCLUSION: Two and 3 years of SMC implementation were associated with increased frequency of the Pfmdr1 N86Y mutation but not Pfdhps 540E, Pfdhps 437G and Pfcrt K76T. The first-time detection of the Pfdhps haplotype bearing the I431V and A581G mutations in Mali, even at low frequency, warrants further long-term surveillance.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Combinação de Medicamentos , Resistência a Medicamentos/genética , Humanos , Lactente , Recém-Nascido , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Mali , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Estações do Ano , Sulfadoxina/farmacologiaRESUMO
A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale.
Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina , Burkina Faso , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Humanos , Malária Falciparum/tratamento farmacológico , Mali , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Falha de TratamentoRESUMO
OBJECTIVES: To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS: We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS: We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS: Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Estudos Transversais , Humanos , Malária Falciparum/tratamento farmacológico , Mali , Plasmodium falciparum , Plasmodium malariae , Estudos ProspectivosRESUMO
BACKGROUND: Artemether-lumefantrine is a highly effective artemisinin-based combination therapy that was adopted in Mali as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study was designed to measure the efficacy of artemether-lumefantrine and to assess the selection of the P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multi-drug resistance 1 (pfmdr1) genotypes that have been associated with drug resistance. METHODS: A 28-day follow-up efficacy trial of artemether-lumefantrine was conducted in patients aged 6 months and older suffering from uncomplicated falciparum malaria in four different Malian areas during the 2009 malaria transmission season. The polymorphic genetic markers MSP2, MSP1, and Ca1 were used to distinguish between recrudescence and reinfection. Reinfection and recrudescence were then grouped as recurrent infections and analyzed together by PCR-restriction fragment length polymorphism (RFLP) to identify candidate markers for artemether-lumefantrine tolerance in the P. falciparum chloroquine resistance transporter (pfcrt) gene and the P. falciparum multi-drug resistance 1 (pfmdr1) gene. RESULTS: Clinical outcomes in 326 patients (96.7%) were analyzed and the 28-day uncorrected adequate clinical and parasitological response (ACPR) rate was 73.9%. The total PCR-corrected 28-day ACPR was 97.2%. The pfcrt 76T and pfmdr1 86Y population prevalence decreased from 49.3% and 11.0% at baseline (n = 337) to 38.8% and 0% in patients with recurrent infection (n = 85); p = 0.001), respectively. CONCLUSION: Parasite populations exposed to artemether-lumefantrine in this study were selected toward chloroquine-sensitivity and showed a promising trend that may warrant future targeted reintroduction of chloroquine or/and amodiaquine.
Assuntos
Combinação Arteméter e Lumefantrina/administração & dosagem , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Alelos , Combinação Arteméter e Lumefantrina/efeitos adversos , Artemisininas/administração & dosagem , Artemisininas/efeitos adversos , Criança , Pré-Escolar , Cloroquina/administração & dosagem , Cloroquina/efeitos adversos , Resistência a Medicamentos/genética , Feminino , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidadeRESUMO
BACKGROUND: Malaria endemic countries need to assess efficacy of anti-malarial treatments on a regular basis. Moreover, resistance to artemisinin that is established across mainland South-East Asia represents today a major threat to global health. Monitoring the efficacy of artemisinin-based combination therapies is of paramount importance to detect as early as possible the emergence of resistance in African countries that toll the highest burden of malaria morbidity and mortality. METHODS: A WHO standard protocol was used to assess efficacy of the combinations artesunate-amodiaquine (AS-AQ Winthrop®), dihydroartemisinin-piperaquine (DHA-PPQ, Eurartesim®) and artemether-lumefantrine (AM-LM, Coartem®) taken under supervision and respecting pharmaceutical recommendations. The study enrolled for each treatment arm 212 children aged 6-59 months living in Maradi (Niger) and suffering with uncomplicated falciparum malaria. The Kaplan-Meier 42-day PCR-adjusted cure rate was the primary outcome. A standardized parasite clearance estimator was used to assess delayed parasite clearance as surrogate maker of suspected artemisinin resistance. RESULTS: No early treatment failures were found in any of the study treatment arms. The day-42 PCR-adjusted cure rate estimates were 99.5, 98.4 and 99.0% in the AS-AQ, DHA-PPQ and AM-LM arms, respectively. The reinfection rate (expressed also as Kaplan-Meier estimates) was higher in the AM-LM arm (32.4%) than in the AS-AQ (13.8%) and the DHA-PPQ arm (24.9%). The parasite clearance rate constant was 0.27, 0.26 and 0.25 per hour for AS-AQ, DHA-PPQ and AM-LM, respectively. CONCLUSIONS: All the three treatments evaluated largely meet WHO criteria (at least 95% efficacy). AS-AQ and AL-LM may continue to be used and DHA-PPQ may be also recommended as first-line treatment for uncomplicated falciparum malaria in Maradi. The parasite clearance rate were consistent with reference values indicating no suspected artemisinin resistance. Nevertheless, the monitoring of anti-malarial drug efficacy should continue. Trial registration details Registry number at ClinicalTrial.gov: NCT01755559.
Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/mortalidade , Quinolinas/uso terapêutico , Amodiaquina/administração & dosagem , Amodiaquina/efeitos adversos , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Artemisininas/administração & dosagem , Artemisininas/efeitos adversos , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Estimativa de Kaplan-Meier , Lumefantrina/administração & dosagem , Lumefantrina/efeitos adversos , Masculino , Níger , Carga Parasitária , Quinolinas/administração & dosagem , Quinolinas/efeitos adversosRESUMO
BACKGROUND: The mechanism of Plasmodium falciparum resistance to quinine is not known. In vitro quantitative trait loci mapping suggests involvement of a predicted P. falciparum sodium-hydrogen exchanger (pfnhe-1) on chromosome 13. METHODS: We conducted prospective quinine efficacy studies in 2 villages, Kollé and Faladié, Mali. Cases of clinical malaria requiring intravenous therapy were treated with standard doses of quinine and followed for 28 days. Treatment outcomes were classified using modified World Health Organization protocols. Molecular markers of parasite polymorphisms were used to distinguish recrudescent parasites from new infections. The prevalence of pfnhe-1 ms4760-1 among parasites before versus after quinine treatment was determined by direct sequencing. RESULTS: Overall, 163 patients were enrolled and successfully followed. Without molecular correction, the mean adequate clinical and parasitological response (ACPR) was 50.3% (n = 163). After polymerase chain reaction correction to account for new infections, the corrected ACPR was 100%. The prevalence of ms4760-1 increased significantly, from 26.2% (n = 107) before quinine treatment to 46.3% (n = 54) after therapy (P = .01). In a control sulfadoxine-pyrimethamine study, the prevalence of ms4760-1 was similar before and after treatment. CONCLUSIONS: This study supports a role for pfnhe-1 in decreased susceptibility of P. falciparum to quinine in the field.
Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Quinina/uso terapêutico , Trocadores de Sódio-Hidrogênio/genética , Sequência de Aminoácidos , Antimaláricos/farmacologia , Humanos , Malária Falciparum/parasitologia , Mali , Repetições de Microssatélites , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Quinina/farmacologia , Alinhamento de SequênciaRESUMO
BACKGROUND: The neonatal mortality rate in Mali is one of the highest in the world. Only one national reference neonatology unit is available in the country. AIM: To describe the time-course of morbidity, mortality, staff and accommodation facilities from 2008 to 2009 in Mali's unique national reference neonatology unit. METHODS: This descriptive and cross-sectional study was conducted in the neonatology unit of Gabriel Touré Teaching Hospital, Bamako. Data concerning staff number of admissions, sex ratio, diseases, patients outcome, capacity and length-of-stay were compiled for the period from 1st January 2008 to 31 December 2012. RESULTS: Medical staff increased from one to three in 2009 and the number of nurses and midwives decreased from 16 to 14 with an average number of beds of 44. The mean number of hospitalizations per year was 3,900 (range: 3667-4585) with 14% of in-born deliveries and a mean length-of-stay of 3.7 days. Prematurity birth asphyxia and infection represented 80.5% of reasons for admission and 79.5% of deaths. The mortality rate varied from 28.5% to 36.8% with an annual mean of 33.2%. The diseases associated with the highest mortality were tetanus (60.8%), prematurity (42.7%), birth asphyxia (29.4%) and infection (25.7%). CONCLUSION: Neonatal mortality remains very high in Mali. Health authorities should take measures to decentralize the care of sick newborns in order to reduce neonatal mortality in Mali.
Assuntos
Mortalidade Infantil/tendências , Doenças do Recém-Nascido/epidemiologia , Estudos Transversais , Feminino , Unidades Hospitalares , Humanos , Recém-Nascido , Masculino , Mali/epidemiologia , Neonatologia , Encaminhamento e Consulta , Fatores de TempoRESUMO
BACKGROUND: Seasonal malaria chemoprevention is used in 13 countries in the Sahel region of Africa to prevent malaria in children younger than 5 years. Resistance of Plasmodium falciparum to seasonal malaria chemoprevention drugs across the region is a potential threat to this intervention. METHODS: Between December, 2015, and March, 2016, and between December, 2017, and March, 2018, immediately following the 2015 and 2017 malaria transmission seasons, community surveys were done among children younger than 5 years and individuals aged 10-30 years in districts implementing seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine in Burkina Faso, Chad, Guinea, Mali, Nigeria, Niger and The Gambia. Dried blood samples were collected and tested for P falciparum DNA by PCR. Resistance-associated haplotypes of the P falciparum genes crt, mdr1, dhfr, and dhps were identified by quantitative PCR and sequencing of isolates from the collected samples, and survey-weighted prevalence and prevalence ratio between the first and second surveys were estimated for each variant. FINDINGS: 5130 (17·5%) of 29 274 samples from 2016 and 2176 (7·6%) of 28 546 samples from 2018 were positive for P falciparum on quantitative PCR. Among children younger than 5 years, parasite carriage decreased from 2844 of 14 345 samples (19·8% [95% CI 19·2-20·5]) in 2016 to 801 of 14 019 samples (5·7% [5·3-6·1]) in 2018 (prevalence ratio 0·27 [95% CI 0·24-0·31], p<0·0001). Genotyping found no consistent evidence of increasing prevalence of amodiaquine resistance-associated variants of crt and mdr1 between 2016 and 2018. The dhfr haplotype IRN (consisting of 51Ile-59Arg-108Asn) was common at both survey timepoints, but the dhps haplotype ISGEAA (431Ile-436Ser-437Gly-540Glu-581Ala-613Ala), crucial for resistance to sulfadoxine-pyrimethamine, was always rare. Parasites carrying amodiaquine resistance-associated variants of both crt and mdr1 together with dhfr IRN and dhps ISGEAA occurred in 0·05% of isolates. The emerging dhps haplotype VAGKGS (431Val-436Ala-437Gly-540Lys-581Gly-613Ser) was present in four countries. INTERPRETATION: In seven African countries, evidence of a significant reduction in parasite carriage among children receiving seasonal malaria chemoprevention was found 2 years after intervention scale-up. Combined resistance-associated haplotypes remained rare, and seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine is expected to retain effectiveness. The threat of future erosion of effectiveness due to dhps variant haplotypes requires further monitoring. FUNDING: Unitaid.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Criança , Humanos , Plasmodium falciparum , Amodiaquina/uso terapêutico , Haplótipos , Antimaláricos/uso terapêutico , Estações do Ano , Prevalência , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Combinação de Medicamentos , Quimioprevenção , Nigéria , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/uso terapêutico , Genômica , Resistência a Medicamentos/genéticaRESUMO
The use of Amodiaquine monotherapy is associated with the selection of molecular markers of Plasmodium falciparum resistance to chloroquine (pfcrt and pfmdr1). The decrease in sensitivity and the emergence of P. falciparum resistant to artemisinin-based combination therapy have been reported. Therefore, it is important to assess the impact of treatment of uncomplicated malaria with Artesunate-Amodiaquine (AS+AQ) on molecular markers of antimalarial resistance. We used standard World Health Organization (WHO) protocols to determine the in vivo efficacy of the combination (AS+AQ). In total, 170 subjects were included in the study. The molecular analysis focused on 168 dried blood spots. The aims were to determine the frequency of pfcrt 76T and pfmdr1 86Y mutations and the rates of reinfection using polymorphism markers msp1, msp2, and microsatellite markers (CA1, Ta87, TA99). Nested-PCR was used, followed in some cases by a restriction digestion. The level of P. falciparum clinical response was 92.9% (156/168) of Adequate Clinical and Parasitological Response (ACPR) before molecular correction and 97.0% (163/168) after molecular correction (P = 0.089). The frequency of mutation point pfcrt 76T was 76.2% (128/168) before treatment and 100% (7/7) after treatment (P = 0.1423). For the pfmdr1 mutation, the frequency was 28% (47/168) before treatment and 60% (6/10) after treatment (P = 0.1124). The rate of pfcrt 76T + pfmdr1 86Y was 22% (37/168) before and 50% (6/12) after treatment (P = 0.1465). Despite the presence of AS in the combination, AS+AQ selects for pfcrt 76T and pfmdr1 86Y mutant P. falciparum in Guinea.
Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Marcadores Genéticos , Técnicas de Genotipagem , Guiné , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Reação em Cadeia da Polimerase , Polimorfismo Genético , Adulto JovemRESUMO
BACKGROUND: Artemisinin resistance described as increased parasite clearance time (PCT) is rare in Africa. More sensitive methods such as qPCR might better characterize the clearance phenotype in sub-Saharan Africa. METHODS: PCT is explored in Mali using light microscopy and qPCR after artesunate for uncomplicated malaria. In two villages, patients were followed for 28 days. Blood smears and spots were collected respectively for microscopy and qPCR. Parasitemia slope half-life was calculated after microscopy. Patient residual parasitemia were measured by qPCR. RESULTS: Uncorrected adequate clinical and parasitological responses (ACPR) observed in Faladje and Bougoula-Hameau were 78% and 92%, respectively (p=0.01). This reached 100% for both after molecular correction. Proportions of 24H microscopy positive patients in Faladje and Bougoula-Hameau were 97.2% and 72%, respectively (p<0.0001). Slope half-life was 2.8h in Faladje vs 2H in Bougoula-Hameau (p<0.001) and Proportions of 72H patients with residual parasitemia were 68.5% and 40% in Faladje and Bougoula-Hameau, respectively (p=0.003). The mean residual parasitemia was 2.9 in Faladje vs. 0.008 in Bougoula-Hameau (p=0.002). Although artesunate is efficacious in Mali, the longer parasite clearance time with submicroscopic parasitemia observed may represent early signs of developing P. falciparum resistance to artemisinins.
Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Criança , Feminino , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Mali , Microscopia , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: Seasonal malaria chemoprevention (SMC) with sulphadoxine-pyrimethamine (SP) plus amodiaquine (AQ) is being scaled up in Sahelian countries of West Africa. However, the potential development of Plasmodium falciparum resistance to the respective component drugs is a major concern. METHODS: Two cross-sectional surveys were conducted before (August 2012) and after (June 2014) a pilot implementation of SMC in Koutiala, Mali. Children aged 3-59 months received 7 rounds of curative doses of SP plus AQ over two malaria seasons. Genotypes of P. falciparum Pfdhfr codons 51, 59 and 108; Pfdhps codons 437 and 540, Pfcrt codon 76 and Pfmdr1codon 86 were analyzed by PCR on DNA from samples collected before and after SMC, and in non-SMC patient population as controls (November 2014). RESULTS: In the SMC population 191/662 (28.9%) and 85/670 (12.7%) of children were P. falciparum positive by microscopy and were included in the molecular analysis before (2012) and after SMC implementation (2014), respectively. In the non-SMC patient population 220/310 (71%) were successfully PCR analyzed. In the SMC children, the prevalence of all molecular markers of SP resistance increased significantly after SMC including the Pfdhfr-dhps quintuple mutant genotype, which was 1.6% before but 7.1% after SMC (p = 0.02). The prevalence of Pfmdr1-86Y significantly decreased from 26.7% to 15.3% (p = 0.04) while no significant change was seen for Pfcrt 76T. In 2014, prevalence of all molecular markers of SP resistance were significantly higher among SMC children compared to the non-SMC population patient (p < 0.01). No Pfdhfr-164 mutation was found neither at baseline nor post SMC. CONCLUSION: SMC increased the prevalence of molecular markers of P. falciparum resistance to SP in the treated children. However, there was no significant increase of these markers of resistance in the general parasite population after 2 years and 7 rounds of SMC.