Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Genomics ; 16: 495, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141111

RESUMO

BACKGROUND: Piscirickettsiosis or Salmonid Rickettsial Septicaemia (SRS) is a bacterial disease that has a major economic impact on the Chilean salmon farming industry. Despite the fact that Piscirickettsia salmonis has been recognized as a major fish pathogen for over 20 years, the molecular strategies underlying the fish response to infection and the bacterial mechanisms of pathogenesis are poorly understood. We analysed and compared the head kidney transcriptional response of Atlantic salmon (Salmo salar) families with different levels of susceptibility to P. salmonis infection in order to reveal mechanisms that might confer infection resistance. RESULTS: We ranked forty full-sibling Atlantic salmon families according to accumulated mortality after a challenge with P. salmonis and selected the families with the lowest and highest cumulative mortalities for microarray gene expression analysis. A comparison of the response to P. salmonis infection between low and high susceptibility groups identified biological processes presumably involved in natural resistance to the pathogen. In particular, expression changes of genes linked to cellular iron depletion, as well as low iron content and bacterial load in the head kidney of fish from low susceptibility families, suggest that iron-deprivation is an innate immunity defence mechanism against P. salmonis. To complement these results, we predicted a set of iron acquisition genes from the P. salmonis genome. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed that most of these genes form part of the Fur regulon of P. salmonis. CONCLUSIONS: This study revealed, for the first time, differences in the transcriptional response to P. salmonis infection among Atlantic salmon families with varied levels of susceptibility to the infection. These differences correlated with changes in the abundance of transcripts encoding proteins directly and indirectly involved in the immune response; changes that highlighted the role of nutritional immunity through iron deprivation in host defence mechanisms against P. salmonis. Additionally, we found that P. salmonis has several mechanisms for iron acquisition, suggesting that this bacterium can obtain iron from different sources, including ferric iron through capturing endogenous and exogenous siderophores and ferrous iron. Our results contribute to determining the underlying resistance mechanisms of Atlantic salmon to P. salmonis infection and to identifying future treatment strategies.


Assuntos
Doenças dos Peixes/genética , Ferro/metabolismo , Piscirickettsia/patogenicidade , Infecções por Piscirickettsiaceae/genética , Salmo salar/genética , Salmo salar/microbiologia , Transcrição Gênica/genética , Animais , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/microbiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Expressão Gênica/genética , Dados de Sequência Molecular , Infecções por Piscirickettsiaceae/metabolismo , Infecções por Piscirickettsiaceae/microbiologia , Salmo salar/metabolismo
2.
BMC Plant Biol ; 14: 7, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24397443

RESUMO

BACKGROUND: Grapevine (Vitis vinifera L.) is the most important Mediterranean fruit crop, used to produce both wine and spirits as well as table grape and raisins. Wine and table grape cultivars represent two divergent germplasm pools with different origins and domestication history, as well as differential characteristics for berry size, cluster architecture and berry chemical profile, among others. 'Sultanina' plays a pivotal role in modern table grape breeding providing the main source of seedlessness. This cultivar is also one of the most planted for fresh consumption and raisins production. Given its importance, we sequenced it and implemented a novel strategy for the de novo assembly of its highly heterozygous genome. RESULTS: Our approach produced a draft genome of 466 Mb, recovering 82% of the genes present in the grapevine reference genome; in addition, we identified 240 novel genes. A large number of structural variants and SNPs were identified. Among them, 45 (21 SNPs and 24 INDELs) were experimentally confirmed in 'Sultanina' and six SNPs in other 23 table grape varieties. Transposable elements corresponded to ca. 80% of the repetitive sequences involved in structural variants and more than 2,000 genes were affected in their structure by these variants. Some of these genes are likely involved in embryo development, suggesting that they may contribute to seedlessness, a key trait for table grapes. CONCLUSIONS: This work produced the first structural variants and SNPs catalog for grapevine, constituting a novel and very powerful tool for genomic studies in this key fruit crop, particularly useful to support marker assisted breeding in table grapes.


Assuntos
Genoma de Planta/genética , Vitis/genética , Vinho , Polimorfismo de Nucleotídeo Único/genética
3.
Acta Biotheor ; 62(2): 145-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24728912

RESUMO

A genome of a living organism consists of a long string of symbols over a finite alphabet carrying critical information for the organism. This includes its ability to control post natal growth, homeostasis, adaptation to changes in the surrounding environment, or to biochemically respond at the cellular level to various specific regulatory signals. In this sense, a genome represents a symbolic encoding of a highly organized system of information whose functioning may be revealed as a natural multilayer structure in terms of complexity and prominence. In this paper we use the mathematical theory of symbolic extensions as a framework to shed light onto how this multilayer organization is reflected in the symbolic coding of the genome. The distribution of data in an element of a standard symbolic extension of a dynamical system has a specific form: the symbolic sequence is divided into several subsequences (which we call layers) encoding the dynamics on various "scales". We propose that a similar structure resides within the genomes, building our analogy on some of the most recent findings in the field of regulation of genomic DNA functioning.


Assuntos
Genoma Humano , Modelos Teóricos , DNA/química , Humanos , Conformação de Ácido Nucleico
4.
J Fungi (Basel) ; 10(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38392828

RESUMO

Fungi belonging to the genus Pseudogymnoascus have garnered increasing attention in recent years. One of the members of the genus, P. destructans, has been identified as the causal agent of a severe bat disease. Simultaneously, the knowledge of Pseudogymnoascus species has expanded, in parallel with the increased availability of genome sequences. Moreover, Pseudogymnoascus exhibits great potential as a producer of specialized metabolites, displaying a diverse array of biological activities. Despite these significant advancements, the genetic landscape of Pseudogymnoascus remains largely unexplored due to the scarcity of suitable molecular tools for genetic manipulation. In this study, we successfully implemented RNAi-mediated gene silencing and CRISPR/Cas9-mediated disruption in Pseudogymnoascus, using an Antarctic strain of Pseudogymnoascus verrucosus as a model. Both methods were applied to target azpA, a gene involved in red pigment biosynthesis. Silencing of the azpA gene to levels of 90% or higher eliminated red pigment production, resulting in transformants exhibiting a white phenotype. On the other hand, the CRISPR/Cas9 system led to a high percentage (73%) of transformants with a one-nucleotide insertion, thereby inactivating azpA and abolishing red pigment production, resulting in a white phenotype. The successful application of RNAi-mediated gene silencing and CRISPR/Cas9-mediated disruption represents a significant advancement in Pseudogymnoascus research, opening avenues for comprehensive functional genetic investigations within this underexplored fungal genus.

5.
Heliyon ; 10(7): e24419, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601544

RESUMO

Background: As the COVID-19 pandemic persists, infections continue to surge globally. Presently, the most effective strategies to curb the disease and prevent outbreaks involve fostering immunity, promptly identifying positive cases, and ensuring their timely isolation. Notably, there are instances where the SARS-CoV-2 virus remains infectious even after patients have completed their quarantine. Objective: Understanding viral persistence post-quarantine is crucial as it could account for localized infection outbreaks. Therefore, studying and documenting such instances is vital for shaping future public health policies. Design: This study delves into a unique case of SARS-CoV-2 persistence in a 60-year-old female healthcare worker with a medical history of hypertension and hypothyroidism. The research spans 55 days, marking the duration between her initial and subsequent diagnosis during Chile's first COVID-19 wave, with the analysis conducted using RT-qPCR. Results: Genomic sequencing-based phylogenetic analysis revealed that the SARS-CoV-2 detected in both Nasopharyngeal swab samples (NPSs) was consistent with the 20B clade of the Nextstrain classification, even after a 55-day interval. Conclusion: This research underscores the need for heightened vigilance concerning cases of viral persistence. Such instances, albeit rare, might be pivotal in understanding sporadic infection outbreaks that occur post-quarantine.

6.
Front Med (Lausanne) ; 10: 1258395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964883

RESUMO

Background and aims: Latin American populations remain underrepresented in genetic studies of inflammatory bowel diseases (IBDs). Most genetic association studies of IBD rely on Caucasian, African, and Asian individuals. These associations have yet to be evaluated in detail in the Andean region of South America. We explored the contribution of IBD-reported genetic risk variants to a Chilean cohort and the ancestry contribution to IBD in this cohort. Methods: A total of 192 Chilean IBD patients were genotyped using Illumina's Global Screening Array. Genotype data were combined with similar information from 3,147 Chilean controls. The proportions of Aymara, African, European, and Mapuche ancestries were estimated using the software ADMIXTURE. We calculated the odds ratios (ORs) and 95% confidence intervals (CIs) for gender, age, and ancestry proportions. We also explored associations with previously reported IBD-risk variants independently and in conjunction with genetic ancestry. Results: The first and third quartiles of the proportion of Mapuche ancestry in IBD patients were 24.7 and 34.2%, respectively, and the corresponding OR was 2.30 (95%CI 1.52-3.48) for the lowest vs. the highest group. Only one variant (rs7210086) of the 180 reported IBD-risk SNPs was associated with IBD risk in the Chilean cohort (adjusted P = 0.01). This variant is related to myeloid cells. Conclusion: The type and proportion of Native American ancestry in Chileans seem to be associated with IBD risk. Variants associated with IBD risk in this Andean region were related to myeloid cells and the innate immune response.

7.
J Bacteriol ; 194(22): 6327-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23105067

RESUMO

Sulfobacillus thermosulfidooxidans strain Cutipay is a mixotrophic, acidophilic, moderately thermophilic bacterium isolated from mining environments of the north of Chile, making it an interesting subject for studying the bioleaching of copper. We introduce the draft genome sequence and annotation of this strain, which provide insights into its mechanisms for heavy metal resistance.


Assuntos
Bactérias/genética , Genoma Bacteriano , Bactérias/classificação , Chile , Mineração , Dados de Sequência Molecular , Microbiologia do Solo
8.
J Environ Public Health ; 2022: 3859071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528635

RESUMO

The identification and tracking of SARS-CoV-2 infected patients in the general population are essential components of the global strategy to limit the COVID-19 viral spread, specifically for maintaining traceability and suppressing the resurgence of local outbreaks. Public health programs that include continuous RT-qPCR testing for COVID-19 in the general population, viral sequencing, and genomic surveillance for highly contagious forms of the virus have allowed for the identification of SARS-CoV-2 infections and reinfections. This work identified SARS-CoV-2 reinfection in a homeless person, which occurred 58 days after the first COVID-19 diagnosis. Genomic sequencing identified a different Nextstrain classification clade (20A and 20B) and PANGO lineage, with a divergence of 4 single nucleotide variants (SNVs) in S and ORF1ab genes, suggesting reinfection by different viral variants. This study is the first from the great metropolitan area of Santiago, Chile, one of the top ten countries in the world to live during the COVID-19 pandemic. We support the importance of performing intensive genomic surveillance programs in the whole population and high-risk groups, such as homeless people, nearly 20 thousand people in Chile, and have limited access to health care services and poor viral traceability.


Assuntos
COVID-19 , Pessoas Mal Alojadas , COVID-19/epidemiologia , Teste para COVID-19 , Chile/epidemiologia , Humanos , Pandemias , Reinfecção , SARS-CoV-2/genética
9.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579701

RESUMO

Chile has one of the worst numbers worldwide in terms of SARS-CoV-2 positive cases and COVID-19-related deaths per million inhabitants; thus, characterization of neutralizing antibody (NAb) responses in the general population is critical to understanding of immunity at the local level. Given our inability to perform massive classical neutralization assays due to the scarce availability of BSL-3 facilities in the country, we developed and fully characterized an HIV-based SARS-CoV-2 pseudotype, which was used in a 96-well plate format to investigate NAb responses in samples from individuals exposed to SARS-CoV-2 or treated with convalescent plasma. We also identified samples with decreased or enhanced neutralization activity against the D614G spike variant compared with the wild type, indicating the relevance of this variant in host immunity. The data presented here represent the first insights into NAb responses in individuals from Chile, serving as a guide for future studies in the country.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19 , COVID-19 , Mutação de Sentido Incorreto , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Substituição de Aminoácidos , Animais , COVID-19/sangue , COVID-19/genética , Chile , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
10.
Microorganisms ; 8(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255149

RESUMO

Piscirickettsiasalmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with numerous negative impacts in the Chilean salmon farming industry. Although transcriptomic studies of P. salmonis and its host have been performed, dual host-pathogen proteomic approaches during infection are still missing. Considering that gene expression does not always correspond with observed phenotype, and bacteriological culture studies inadequately reflect infection conditions, to improve the existing knowledge for the pathogenicity of P. salmonis, we present here a global proteomic profiling of Salmon salar macrophage-like cell cultures infected with P. salmonis LF-89. The proteomic analyses identified several P. salmonis proteins from two temporally different stages of macrophages infection, some of them related to key functions for bacterial survival in other intracellular pathogens. Metabolic differences were observed in early-stage infection bacteria, compared to late-stage infections. Virulence factors related to membrane, lipopolysaccharide (LPS) and surface component modifications, cell motility, toxins, and secretion systems also varied between the infection stages. Pilus proteins, beta-hemolysin, and the type VI secretion system (T6SS) were characteristic of the early-infection stage, while fimbria, upregulation of 10 toxins or effector proteins, and the Dot/Icm type IV secretion system (T4SS) were representative of the late-infection stage bacteria. Previously described virulence-related genes in P. salmonis plasmids were identified by proteomic assays during infection in SHK-1 cells, accompanied by an increase of mobile-related elements. By comparing the infected and un-infected proteome of SHK-1 cells, we observed changes in cellular and redox homeostasis; innate immune response; microtubules and actin cytoskeleton organization and dynamics; alteration in phagosome components, iron transport, and metabolism; and amino acids, nucleoside, and nucleotide metabolism, together with an overall energy and ATP production alteration. Our global proteomic profiling and the current knowledge of the P. salmonis infection process allowed us to propose a model of the macrophage-P. salmonis interaction.

11.
Mar Biotechnol (NY) ; 22(1): 109-117, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31938972

RESUMO

Nile tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world. Currently, the estimation of genetic merit of breeders is typically based on genealogical and phenotypic information. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to measure into the breeding goal. Thus, single nucleotide polymorphisms (SNPs) are required to investigate phenotype-genotype associations and determine the genomic basis of economically important traits. We performed de novo SNP discovery in three different populations of farmed Nile tilapia. A total of 29.9 million non-redundant SNPs were identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After applying several filtering steps, including removing SNP based on genotype and site quality, presence of Mendelian errors, and non-unique position in the genome, a total of 50,000 high-quality SNPs were selected for the development of a custom Illumina BeadChip SNP panel. These SNPs were highly informative in the three populations analyzed showing between 43,869 (94%) and 46,139 (99%) SNPs in Hardy-Weinberg Equilibrium; 37,843 (76%) and 45,171(90%) SNPs with a minor allele frequency (MAF) higher than 0.05; and 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The 50K SNP panel developed in the current work will be useful for the dissection of economically relevant traits, enhancing breeding programs through genomic selection, as well as supporting genetic studies in farmed populations of Nile tilapia using dense genome-wide information.


Assuntos
Ciclídeos/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Aquicultura , Cruzamento , Análise de Sequência de DNA
12.
Pathogens ; 8(4)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795181

RESUMO

Four large cryptic plasmids were identified in the salmon pathogen Piscirickettsia salmonis reference strain LF-89. These plasmids appeared highly novel, with less than 7% nucleotidic identity to the nr plasmid database. Plasmid copy number analysis revealed that they are harbored in chromosome equivalent ratios. In addition to plasmid-related genes (plasmidial autonomous replication, partitioning, maintenance, and mobilization genes), mobile genetic elements such as transposases, integrases, and prophage sequences were also identified in P. salmonis plasmids. However, bacterial lysis was not observed upon the induction of prophages. A total of twelve putative virulence factors (VFs) were identified, in addition to two global transcriptional regulators, the widely conserved CsrA protein and the regulator Crp/Fnr. Eleven of the putative VFs were overexpressed during infection in two salmon-derived cellular infection models, supporting their role as VFs. The ubiquity of these plasmids was also confirmed by sequence similarity in the genomes of other P. salmonis strains. The ontology of P. salmonis plasmids suggests a role in bacterial fitness and adaptation to the environment as they encode proteins related to mobilization, nutrient transport and utilization, and bacterial virulence. Further functional characterization of P. salmonis plasmids may improve our knowledge regarding virulence and mobile elements in this intracellular pathogen.

13.
Front Mol Biosci ; 6: 155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998751

RESUMO

Acidithiobacillus thiooxidans is one of the most studied biomining species, highlighting its ability to oxidize reduced inorganic sulfur compounds, coupled with its elevated capacity to live under an elevated concentration of heavy metals. In this work, using an in silico semi-automatic genome scale approach, two biological networks for A. thiooxidans Licanantay were generated: (i) An affinity transcriptional regulatory network composed of 42 regulatory family genes and 1,501 operons (57% genome coverage) linked through 2,646 putative DNA binding sites (arcs), (ii) A metabolic network reconstruction made of 523 genes and 1,203 reactions (22 pathways related to biomining processes). Through the identification of confident connections between both networks (V-shapes), it was possible to identify a sub-network of transcriptional factor (34 regulators) regulating genes (61 operons) encoding for proteins involved in biomining-related pathways. Network analysis suggested that transcriptional regulation of biomining genes is organized into different modules. The topological parameters showed a high hierarchical organization by levels inside this network (14 layers), highlighting transcription factors CysB, LysR, and IHF as complex modules with high degree and number of controlled pathways. In addition, it was possible to identify transcription factor modules named primary regulators (not controlled by other regulators in the sub-network). Inside this group, CysB was the main module involved in gene regulation of several bioleaching processes. In particular, metabolic processes related to energy metabolism (such as sulfur metabolism) showed a complex integrated regulation, where different primary regulators controlled several genes. In contrast, pathways involved in iron homeostasis and oxidative stress damage are mainly regulated by unique primary regulators, conferring Licanantay an efficient, and specific metal resistance response. This work shows new evidence in terms of transcriptional regulation at a systems level and broadens the study of bioleaching in A. thiooxidans species.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31998656

RESUMO

Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, a systemic infection of salmonid fish species. P. salmonis infects and survives in its host cell, a process that correlates with the expression of virulence factors including components of the type IVB secretion system. To gain further insights into the cellular and molecular mechanism behind the adaptive response of P. salmonis during host infection, we established an in vitro model of infection using the SHK-1 cell line from Atlantic salmon head kidney. The results indicated that in comparison to uninfected SHK-1 cells, infection significantly decreased cell viability after 10 days along with a significant increment of P. salmonis genome equivalents. At that time, the intracellular bacteria were localized within a spacious cytoplasmic vacuole. By using a whole-genome microarray of P. salmonis LF-89, the transcriptome of this bacterium was examined during intracellular growth in the SHK-1 cell line and exponential growth in broth. Transcriptome analysis revealed a global shutdown of translation during P. salmonis intracellular growth and suggested an induction of the stringent response. Accordingly, key genes of the stringent response pathway were up-regulated during intracellular growth as well as at stationary phase bacteria, suggesting a role of the stringent response on bacterial virulence. Our results also reinforce the participation of the Dot/Icm type IVB secretion system during P. salmonis infection and reveals many unexplored genes with potential roles in the adaptation to intracellular growth. Finally, we proposed that intracellular P. salmonis alternates between a replicative phase and a stationary phase in which the stringent response is activated.


Assuntos
Macrófagos/microbiologia , Piscirickettsia/metabolismo , Infecções por Piscirickettsiaceae/microbiologia , Salmão/microbiologia , Transcriptoma , Animais , Sistemas de Secreção Bacterianos , Linhagem Celular , Sobrevivência Celular , Citoplasma/microbiologia , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genoma Bacteriano , Rim , Macrófagos/metabolismo , Piscirickettsia/genética , Piscirickettsia/crescimento & desenvolvimento , Piscirickettsia/patogenicidade , Fatores de Virulência
15.
G3 (Bethesda) ; 9(10): 3213-3223, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31416805

RESUMO

Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.


Assuntos
Hormônio Antimülleriano/genética , Mapeamento Cromossômico , Ciclídeos/genética , Estudo de Associação Genômica Ampla , Processos de Determinação Sexual/genética , Sequenciamento Completo do Genoma , Animais , Feminino , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
16.
Sci Rep ; 9(1): 2132, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765821

RESUMO

Whole human genome sequencing initiatives help us understand population history and the basis of genetic diseases. Current data mostly focuses on Old World populations, and the information of the genomic structure of Native Americans, especially those from the Southern Cone is scant. Here we present annotation and variant discovery from high-quality complete genome sequences of a cohort of 11 Mapuche-Huilliche individuals (HUI) from Southern Chile. We found approximately 3.1 × 106 single nucleotide variants (SNVs) per individual and identified 403,383 (6.9%) of novel SNVs events. Analyses of large-scale genomic events detected 680 copy number variants (CNVs) and 4,514 structural variants (SVs), including 398 and 1,910 novel events, respectively. Global ancestry composition of HUI genomes revealed that the cohort represents a sample from a marginally admixed population from the Southern Cone, whose main genetic component derives from Native American ancestors. Additionally, we found that HUI genomes contain variants in genes associated with 5 of the 6 leading causes of noncommunicable diseases in Chile, which may have an impact on the risk of prevalent diseases in Chilean and Amerindian populations. Our data represents a useful resource that can contribute to population-based studies and for the design of early diagnostics or prevention tools for Native and admixed Latin American populations.


Assuntos
Etnicidade/genética , Marcadores Genéticos , Genética Populacional , Genoma Humano , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Chile , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Mycology ; 9(1): 59-69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123662

RESUMO

The high lignocellulolytic activity displayed by the soft-rot fungus Penicillium purpurogenum has made it a target for the study of novel lignocellulolytic enzymes. We have obtained a reference genome of 36.2 Mb of non-redundant sequence (11,057 protein-coding genes). The 49 largest scaffolds cover 90% of the assembly, and Core Eukaryotic Genes Mapping Approach (CEGMA) analysis reveals that our assembly captures almost all protein-coding genes. RNA-seq was performed and 93.1% of the reads aligned to the assembled genome. These data, plus the independent sequencing of a set of genes of lignocellulose-degrading enzymes, validate the quality of the genome sequence. P. purpurogenum shows a higher number of proteins with CAZy motifs, transcription factors and transporters as compared to other sequenced Penicillia. These results demonstrate the great potential for lignocellulolytic activity of this fungus and the possible use of its enzymes in related industrial applications.

18.
Front Microbiol ; 9: 1580, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065712

RESUMO

The ferric uptake regulator (Fur) plays a major role in controlling the expression of iron homeostasis genes in bacterial organisms. In this work, we fully characterized the capacity of Fur to reconfigure the global transcriptional network and influence iron homeostasis in Enterococcus faecalis. The characterization of the Fur regulon from E. faecalis indicated that this protein (Fur) regulated the expression of genes involved in iron uptake systems, conferring to the system a high level of efficiency and specificity to respond under different iron exposure conditions. An RNAseq assay coupled with a systems biology approach allowed us to identify the first global transcriptional network activated by different iron treatments (excess and limited), with and without the presence of Fur. The results showed that changes in iron availability activated a complex network of transcriptional factors in E. faecalis, among them global regulators such as LysR, ArgR, GalRS, and local regulators, LexA and CopY, which were also stimulated by copper and zinc treatments. The deletion of Fur impacted the expression of genes encoding for ABC transporters, energy production and [Fe-S] proteins, which optimized detoxification and iron uptake under iron excess and limitation, respectively. Finally, considering the close relationship between iron homeostasis and pathogenesis, our data showed that the absence of Fur increased the internal concentration of iron in the bacterium and also affected its ability to produce biofilm. These results open new alternatives in the field of infection mechanisms of E. faecalis.

19.
Sci Rep ; 8(1): 5875, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651160

RESUMO

Understanding the factors that modulate bacterial community assembly in natural soils is a longstanding challenge in microbial community ecology. In this work, we compared two microbial co-occurrence networks representing bacterial soil communities from two different sections of a pH, temperature and humidity gradient occurring along a western slope of the Andes in the Atacama Desert. In doing so, a topological graph alignment of co-occurrence networks was used to determine the impact of a shift in environmental variables on OTUs taxonomic composition and their relationships. We observed that a fraction of association patterns identified in the co-occurrence networks are persistent despite large environmental variation. This apparent resilience seems to be due to: (1) a proportion of OTUs that persist across the gradient and maintain similar association patterns within the community and (2) bacterial community ecological rearrangements, where an important fraction of the OTUs come to fill the ecological roles of other OTUs in the other network. Actually, potential functional features suggest a fundamental role of persistent OTUs along the soil gradient involving nitrogen fixation. Our results allow identifying factors that induce changes in microbial assemblage configuration, altering specific bacterial soil functions and interactions within the microbial communities in natural environments.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos/genética , Ecologia , Microbiota/fisiologia , Archaea/crescimento & desenvolvimento , Microbiota/genética , RNA Ribossômico 16S , Microbiologia do Solo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
20.
Front Microbiol ; 8: 2462, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321769

RESUMO

Piscirickettsia salmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with highly adverse impact in the Chilean salmon farming industry. The development of effective treatment and control methods for piscireckttsiosis is still a challenge. To meet it the number of studies on P. salmonis has grown in the last couple of years but many aspects of the pathogen's biology are still poorly understood. Studies on its metabolism are scarce and only recently a metabolic model for reference strain LF-89 was developed. We present a new genome-scale model for P. salmonis LF-89 with more than twice as many genes as in the previous model and incorporating specific elements of the fish pathogen metabolism. Comparative analysis with models of different bacterial pathogens revealed a lower flexibility in P. salmonis metabolic network. Through constraint-based analysis, we determined essential metabolites required for its growth and showed that it can benefit from different carbon sources tested experimentally in new defined media. We also built an additional model for strain A1-15972, and together with an analysis of P. salmonis pangenome, we identified metabolic features that differentiate two main species clades. Both models constitute a knowledge-base for P. salmonis metabolism and can be used to guide the efficient culture of the pathogen and the identification of specific drug targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA