Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Circ Res ; 134(5): e3-e14, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38348651

RESUMO

BACKGROUND: Posttranslational glycosylation of IgG can modulate its inflammatory capacity through structural variations. We examined the association of baseline IgG N-glycans and an IgG glycan score with incident cardiovascular disease (CVD). METHODS: IgG N-glycans were measured in 2 nested CVD case-control studies: JUPITER (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; NCT00239681; primary prevention; discovery; Npairs=162); and TNT trial (Treating to New Targets; NCT00327691; secondary prevention; validation; Npairs=397). Using conditional logistic regression, we investigated the association of future CVD with baseline IgG N-glycans and a glycan score adjusting for clinical risk factors (statin treatment, age, sex, race, lipids, hypertension, and smoking) in JUPITER. Significant associations were validated in TNT, using a similar model further adjusted for diabetes. Using least absolute shrinkage and selection operator regression, an IgG glycan score was derived in JUPITER as a linear combination of selected IgG N-glycans. RESULTS: Six IgG N-glycans were associated with CVD in both studies: an agalactosylated glycan (IgG-GP4) was positively associated, while 3 digalactosylated glycans (IgG glycan peaks 12, 13, 14) and 2 monosialylated glycans (IgG glycan peaks 18, 20) were negatively associated with CVD after multiple testing correction (overall false discovery rate <0.05). Four selected IgG N-glycans comprised the IgG glycan score, which was associated with CVD in JUPITER (adjusted hazard ratio per glycan score SD, 2.08 [95% CI, 1.52-2.84]) and validated in TNT (adjusted hazard ratio per SD, 1.20 [95% CI, 1.03-1.39]). The area under the curve changed from 0.693 for the model without the score to 0.728 with the score in JUPITER (PLRT=1.1×10-6) and from 0.635 to 0.637 in TNT (PLRT=0.017). CONCLUSIONS: An IgG N-glycan profile was associated with incident CVD in 2 populations (primary and secondary prevention), involving an agalactosylated glycan associated with increased risk of CVD, while several digalactosylated and sialylated IgG glycans associated with decreased risk. An IgG glycan score was positively associated with future CVD.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Imunoglobulina G , Glicosilação , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Estudos de Casos e Controles , Polissacarídeos
2.
Chem Rev ; 122(20): 15865-15913, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797639

RESUMO

Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.


Assuntos
Glicômica , Polissacarídeos , Glicômica/métodos , Glicosilação , Polissacarídeos/química
3.
BMC Cancer ; 23(1): 166, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805683

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS: We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS: We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION: While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Melanoma/tratamento farmacológico , Instituições de Assistência Ambulatorial , Europa (Continente) , Polissacarídeos
4.
Biotechnol Bioeng ; 120(2): 491-502, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324280

RESUMO

Haptoglobin (Hp) is a positive acute phase protein, synthesized in the liver, with four N-glycosylation sites carrying mainly complex type N-glycans. Its glycosylation is altered in different types of diseases but still has not been extensively studied mainly due to analytical challenges, especially the lack of a fast, efficient, and robust high-throughput Hp isolation procedure. Here, we describe the development of a high-throughput method for Hp enrichment from human plasma, based on monolithic chromatographic support in immunoaffinity mode and downstream Hp N-glycome analysis by hydrophilic interaction ultrahigh-performance liquid chromatography with fluorescent detection (HILIC-UHPLC-FLR). Chromatographic monolithic supports in a 96-well format enable fast, efficient, and robust Hp enrichment directly from diluted plasma samples. The N-glycome analysis demonstrated that a degree of Hp deglycosylation differs depending on the conditions used for N-glycan release and on the specific glycosylation site, with Asn 241 being the most resistant to deglycosylation under tested conditions. HILIC-UHPLC-FLR analysis enables robust quantification of 28 individual chromatographic peaks, in which N-glycan compositions were determined by UHPLC coupled to electrospray ionization quadrupole time of flight mass spectrometry. The developed analytical approach enables fast evaluation of total Hp N-glycosylation and is applicable in large-scale studies.


Assuntos
Haptoglobinas , Espectrometria de Massas por Ionização por Electrospray , Humanos , Cromatografia Líquida , Glicosilação , Polissacarídeos/química
5.
Glycobiology ; 32(8): 651-663, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35452121

RESUMO

Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.


Assuntos
Glicômica , Proteínas , Glicômica/métodos , Glicosilação , Humanos , Polissacarídeos/química , Proteínas/metabolismo
6.
Mol Cell Proteomics ; 19(5): 774-792, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024769

RESUMO

Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Doenças Autoimunes/imunologia , Fucose/metabolismo , Imunoglobulina G/metabolismo , Doenças da Glândula Tireoide/imunologia , Adulto , Células Sanguíneas/metabolismo , Estudos de Coortes , Regulação da Expressão Gênica , Glicômica , Glicosilação , Humanos , Imunoglobulina G/genética , Iodeto Peroxidase/imunologia , Desequilíbrio de Ligação/genética , Modelos Biológicos , Polimorfismo de Nucleotídeo Único/genética , Polissacarídeos/metabolismo
7.
Glycobiology ; 31(1): 2-7, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472132

RESUMO

Glycoproteins, proteins that are co- and posttranslationally modified by sugars (glycans), have significant roles in pathophysiology of many different diseases. One of the main steps in sample preparation for free N-glycan analysis is deglycosylation or glycan removal. The aim of this study was to compare different peptide N-glycosidase F (PNGase F) enzymes (Rapid PNGase F and two recombinant versions) for deglycosylation of total human plasma glycoproteins and different amounts of human immunoglobulin G (IgG). Deglycosylation with different PNGase F enzymes resulted in different IgG and plasma N-glycosylation hydrophilic interaction liquid chromatography ultra-performance liquid chromatography profiles. Additionally, one recombinant version of PNGase F is more efficient in deglycosylation of complex N-glycans compared with Rapid PNGase F and recombinant version of PNGase F from a different manufacturer. In terms of chromatographic peak intensities and coefficient of variation %Area values, all tested versions of PNGase F enzymes were very reproducible and on the similar level when used in optimal conditions. However, care should be taken in terms of which enzyme is used with which protocol, particularly when scaling up.


Assuntos
Imunoglobulina G/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/sangue , Humanos , Imunoglobulina G/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Polissacarídeos/metabolismo
8.
Glycobiology ; 31(9): 1062-1067, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34132802

RESUMO

Protein glycosylation is the attachment of a carbohydrate moiety to a protein backbone affecting both structure and function of the protein. Abnormal glycosylation is associated with various diseases, and some of the changes in glycosylation are detectable even before symptom development. As such, glycans have emerged as compelling new biomarker candidates. A wide range of analytical methods exist for small-scale glycan analyses. However, there is a growing need for highly robust and reproducible high-throughput techniques that allow for large-scale glycoprofiling. Here, we describe the evaluation of robustness and repeatability of immunoglobulin G (IgG) N-glycan analysis using the GlycoWorks RapiFluor-MS N-Glycan Kit followed by hydrophilic interaction ultra-high-performance liquid chromatography (HILIC-UHPLC) from 335 technical replicates of human plasma randomly distributed across 67 96-well plates. The data was collected over a 5-month period using multiple UHPLC systems and chromatographic columns. Following relative IgG N-glycan quantification in acquired chromatograms, data analysis showed that the most abundant peaks that together made up for three-fourths of the detected IgG N-glycome all had coefficients of variation (CVs) lower than 2%. The highest CVs ranging from 16 to 29% accompanied low abundance glycan peaks with the individual relative peak area below 1% that together made up for <2% of the detected IgG N-glycome. These results show that the tested method is very robust and repeatable, making it suitable for the IgG N-glycan analysis of a large number of samples in a high-throughput manner over a longer period of time.


Assuntos
Glicômica , Imunoglobulina G , Cromatografia Líquida de Alta Pressão/métodos , Glicômica/métodos , Glicosilação , Humanos , Imunoglobulina G/química , Polissacarídeos/metabolismo
9.
Glycobiology ; 31(4): 372-377, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174592

RESUMO

A large variation in the severity of disease symptoms is one of the key open questions in coronavirus disease 2019 (COVID-19) pandemics. The fact that only a small subset of people infected with severe acute respiratory syndrome coronavirus 2 develops severe disease suggests that there have to be some predisposing factors, but biomarkers that reliably predict disease severity have not been found so far. Since overactivation of the immune system is implicated in a severe form of COVID-19 and the immunoglobulin G (IgG) glycosylation is known to be involved in the regulation of different immune processes, we evaluated the association of interindividual variation in IgG N-glycome composition with the severity of COVID-19. The analysis of 166 severe and 167 mild cases from hospitals in Spain, Italy and Portugal revealed statistically significant differences in the composition of the IgG N-glycome. The most notable difference was the decrease in bisecting N-acetylglucosamine in severe patients from all three cohorts. IgG galactosylation was also lower in severe cases in all cohorts, but the difference in galactosylation was not statistically significant after correction for multiple testing.


Assuntos
COVID-19/epidemiologia , COVID-19/patologia , Imunoglobulina G/metabolismo , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Adulto , Idoso , COVID-19/metabolismo , COVID-19/virologia , Estudos de Coortes , Feminino , Glicosilação , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Portugal/epidemiologia , Espanha/epidemiologia
10.
Glycobiology ; 31(2): 82-88, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521004

RESUMO

Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Estudos de Coortes , Biologia Computacional , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Polissacarídeos/metabolismo
11.
Hum Mol Genet ; 28(12): 2062-2077, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31163085

RESUMO

Glycosylation is a common post-translational modification of proteins. Glycosylation is associated with a number of human diseases. Defining genetic factors altering glycosylation may provide a basis for novel approaches to diagnostic and pharmaceutical applications. Here we report a genome-wide association study of the human blood plasma N-glycome composition in up to 3811 people measured by Ultra Performance Liquid Chromatography (UPLC) technology. Starting with the 36 original traits measured by UPLC, we computed an additional 77 derived traits leading to a total of 113 glycan traits. We studied associations between these traits and genetic polymorphisms located on human autosomes. We discovered and replicated 12 loci. This allowed us to demonstrate an overlap in genetic control between total plasma protein and IgG glycosylation. The majority of revealed loci contained genes that encode enzymes directly involved in glycosylation (FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3 and MGAT5) and a known regulator of plasma protein fucosylation (HNF1A). However, we also found loci that could possibly reflect other more complex aspects of glycosylation process. Functional genomic annotation suggested the role of several genes including DERL3, CHCHD10, TMEM121, IGH and IKZF1. The hypotheses we generated may serve as a starting point for further functional studies in this research area.


Assuntos
Fucosiltransferases/genética , Glicosiltransferases/genética , Polissacarídeos/sangue , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Fucosiltransferases/sangue , Fucosiltransferases/química , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/sangue , Glucuronosiltransferase/química , Glicosilação , Fator 1-alfa Nuclear de Hepatócito/sangue , Fator 1-alfa Nuclear de Hepatócito/química , Humanos , Imunoglobulina G/metabolismo , Proteínas de Membrana/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas
12.
Glycoconj J ; 38(5): 611-623, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34542788

RESUMO

The severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) infection displays a wide array of clinical manifestations. Although some risk factors for coronavirus disease 2019 (COVID-19) severity and outcomes have been identified the underlying biologic mechanisms are still not well understood. The surface SARS-CoV-2 proteins are heavily glycosylated enabling host cell interaction and viral entry. Angiotensin-converting enzyme 2 (ACE2) has been identified to be the main host cell receptor enabling SARS-CoV-2 cell entry after interaction with its S glycoprotein. However, recent studies report SARS-CoV-2 S glycoprotein interaction with other cell receptors, mainly C-type lectins which recognize specific glycan epitopes facilitating SARS-CoV-2 entry to susceptible cells. Here, we are summarizing the main findings on SARS-CoV-2 interactions with ACE2 and other cell membrane surface receptors and soluble lectins involved in the viral cell entry modulating its infectivity and potentially playing a role in subsequent clinical manifestations of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Glicosilação , Humanos
13.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242110

RESUMO

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Assuntos
Artrite Reumatoide/metabolismo , Proteínas Sanguíneas/análise , Glicômica/métodos , Complicações na Gravidez/metabolismo , Adulto , Proteínas Sanguíneas/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Feminino , Glicosilação , Humanos , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Adv Exp Med Biol ; 1325: 239-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495539

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently one of the major health problems worldwide. SARS-CoV-2 survival and virulence are shown to be impacted by glycans, covalently attached to proteins in a process of glycosylation, making glycans an area of interest in SARS-CoV-2 biology and COVID-19 infection. The SARS-CoV-2 uses its highly glycosylated spike (S) glycoproteins to bind to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. Viral glycosylation has wide-ranging roles in viral pathobiology, including mediating protein folding and stability, immune evasion, host receptor attachment, and cell entry. Modification of SARS-CoV-2 envelope membrane with glycans is important in host immune recognition and interaction between S and ACE2 glycoproteins. On the other hand, immunoglobulin G, a key molecule in immune response, shows a distinct glycosylation profile in COVID-19 infection and with increased disease severity. Hence, further studies on the role of glycosylation in SARS-CoV-2 infectivity and COVID-19 infection are needed for its successful prevention and treatment. This chapter focuses on recent findings on the importance of glycosylation in COVID-19 infection.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Glicosilação , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
J Proteome Res ; 19(1): 85-91, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31747749

RESUMO

The N-glycosylation profile of total human plasma proteins could be a useful biomarker for various pathological states. Reliable high-throughput methods for such profiling have been developed. However, studies of relative importance of genetic and environmental factors in regulating plasma N-glycome are scarce. The aim of our study was to determine the role of genetic factors in phenotypic variation of plasma N-glycan profile through the estimates of its heritability. Thirty-nine total plasma N-glycome traits were analyzed in 2816 individuals from the TwinsUK data set. For the majority of the traits, high heritability estimates (>50%) were obtained pointing at a significant contribution of genetic factors in plasma N-glycome variation, especially for glycans mostly attached to immunoglobulins. We have also found several structures with higher environmental contribution to their variation.


Assuntos
Plasma , Polissacarídeos , Glicosilação , Humanos
16.
Nat Chem Biol ; 14(5): 516-524, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632412

RESUMO

Immunoglobulin G (IgG) glycosylation is essential for function of the immune system, but the genetic and environmental factors that underlie its inter-individual variability are not well defined. The Collaborative Cross (CC) genetic resource harnesses over 90% of the common genetic variation of the mouse. By analyzing the IgG glycome composition of 95 CC strains, we made several important observations: (i) glycome variation between mouse strains was higher than between individual humans, despite all mice having the same environmental influences; (ii) five genetic loci were found to be associated with murine IgG glycosylation; (iii) variants outside traditional glycosylation site motifs affected glycome variation; (iv) bisecting N-acetylglucosamine (GlcNAc) was produced by several strains although most previous studies have reported the absence of glycans containing the bisecting GlcNAc on murine IgGs; and (v) common laboratory mouse strains are not optimal animal models for studying effects of glycosylation on IgG function.


Assuntos
Glicosilação , Imunoglobulina G/química , Imunoglobulina G/genética , Acetilglucosamina/química , Envelhecimento , Animais , Fucose/química , Regulação da Expressão Gênica , Variação Genética , Glicopeptídeos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Peptídeos/química , Fenótipo , Polissacarídeos/química , Locos de Características Quantitativas
17.
Circ Res ; 122(11): 1555-1564, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29535164

RESUMO

RATIONALE: One measure of protein glycosylation (GlycA) has been reported to predict higher cardiovascular risk by reflecting inflammatory pathways. OBJECTIVE: The main objective of this study is to assess the role of a comprehensive panel of IgG glycosylation traits on traditional risk factors for cardiovascular disease and on presence of subclinical atherosclerosis in addition to GlycA. METHODS AND RESULTS: We measured 76 IgG glycosylation traits in 2970 women (age range, 40-79 years) from the TwinsUK cohort and correlated it to their estimated 10-year atherosclerotic cardiovascular disease risk score and their carotid and femoral plaque measured by ultrasound imaging. Eight IgG glycan traits are associated with the 10-year atherosclerotic cardiovascular disease risk score after adjusting for multiple tests and for individual risk factors-5 with increased risk and 3 with decreased risk. These glycans replicated in 967 women from ORCADES cohort (Orkney Complex Disease Study), and 6 of them were also associated in 845 men. A linear combination of IgG glycans and GlycA is also associated with presence of carotid (odds ratio, 1.55; 95% confidence interval, 1.25-1.93; P=7.5×10-5) and femoral (odds ratio, 1.32; 95% confidence interval, 1.06-1.64; P=0.01) plaque in a subset of women with atherosclerosis data after adjustment for traditional risk factors. One specific glycosylation trait, GP18-the percentage of FA2BG2S1 glycan in total IgG glycans, was negatively correlated with very-low-density lipoprotein and triglyceride levels in serum and with presence of carotid plaque (odds ratio, 0.60; 95% confidence interval, 0.50-0.71; P=5×10-4). CONCLUSIONS: We find molecular pathways linking IgG to arterial lesion formation. Glycosylation traits are independently associated with subclinical atherosclerosis. One specific trait related to the sialylated N-glycan is negatively correlated with cardiovascular disease risk, very-low-density lipoprotein and triglyceride serum levels, and presence of carotid plaque.


Assuntos
Aterosclerose/complicações , Doenças Cardiovasculares/etiologia , Doenças em Gêmeos/etiologia , Imunoglobulina G/metabolismo , Adulto , Idoso , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/metabolismo , Estudos de Coortes , Intervalos de Confiança , Doenças em Gêmeos/metabolismo , Feminino , Artéria Femoral/diagnóstico por imagem , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Polissacarídeos/metabolismo , Medição de Risco , Fatores de Risco , Ultrassonografia
18.
Glycobiology ; 29(12): 817-821, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31410450

RESUMO

Immunoglobulin G (IgG) glycans are emerging as a new putative biomarker for biological age and different diseases, requiring a robust workflow for IgG glycome analysis, ideally beginning with a simple and undemanding sampling procedure. Here, we report the first comprehensive study on total N-glycans of IgG isolated from dried blood spots (DBSs), which was performed in a high-throughput mode. We compared the IgG N-glycan profiles originating from DBS with those originating from plasma, compared different media for DBS collection, evaluated analytical variation and assessed IgG N-glycan profile stability for different storage conditions. In conclusion, we show that DBSs are a good and stable source material for a robust IgG N-glycan analysis by ultra-performance liquid chromatography, suitable for blood sampling in conditions where no trained personnel and necessary laboratory equipment are available.


Assuntos
Teste em Amostras de Sangue Seco , Imunoglobulina G/sangue , Imunoglobulina G/química , Cromatografia Líquida de Alta Pressão , Glicosilação , Humanos , Imunoglobulina G/isolamento & purificação
19.
Gastroenterology ; 154(5): 1320-1333.e10, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29309774

RESUMO

BACKGROUND AND AIMS: Causes of inflammatory bowel diseases are not well understood and the most prominent forms, Crohn's disease (CD) and ulcerative colitis (UC), are sometimes hard to distinguish. Glycosylation of IgG has been associated with CD and UC. IgG Fc-glycosylation affects IgG effector functions. We evaluated changes in IgG Fc-glycosylation associated with UC and CD, as well as with disease characteristics in different patient groups. METHODS: We analyzed 3441 plasma samples obtained from 2 independent cohorts of patients with CD (874 patients from Italy and 391 from the United States) or UC (1056 from Italy and 253 from the US and healthy individuals [controls]; 427 in Italy and 440 from the United States). IgG Fc-glycosylation (tryptic glycopeptides) was analyzed by liquid chromatography coupled to mass spectrometry. We analyzed associations between disease status (UC vs controls, CD vs controls, and UC vs CD) and glycopeptide traits, and associations between clinical characteristics and glycopeptide traits, using a logistic regression model with age and sex included as covariates. RESULTS: Patients with CD or UC had lower levels of IgG galactosylation than controls. For example, the odds ratio (OR) for IgG1 galactosylation in patients with CD was 0.59 (95% confidence interval [CI], 0.51-0.69) and for patients with UC was 0.81 (95% CI, 0.71-0.92). Fucosylation of IgG was increased in patients with CD vs controls (for IgG1: OR, 1.27; 95% CI, 1.12-1.44), but decreased in patients with UC vs controls (for IgG23: OR, 0.72; 95% CI, 0.63-0.82). Decreased galactosylation associated with more severe CD or UC, including the need for surgery in patients with UC vs controls (for IgG1: OR, 0.69; 95% CI, 0.54-0.89) and in patients with CD vs controls (for IgG23: OR, 0.78; 95% CI, 0.66-0.91). CONCLUSIONS: In a retrospective analysis of plasma samples from patients with CD or UC, we associated levels of IgG Fc-glycosylation with disease (compared to controls) and its clinical features. These findings could increase our understanding of mechanisms of CD and UC pathogenesis and be used to develop diagnostics or guide treatment.


Assuntos
Colite Ulcerativa/sangue , Doença de Crohn/sangue , Fragmentos Fc das Imunoglobulinas/sangue , Imunoglobulina G/sangue , Processamento de Proteína Pós-Traducional , Adulto , Área Sob a Curva , Estudos de Casos e Controles , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/imunologia , Colite Ulcerativa/terapia , Doença de Crohn/diagnóstico , Doença de Crohn/imunologia , Doença de Crohn/terapia , Feminino , Glicosilação , Humanos , Itália , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Valor Preditivo dos Testes , Prognóstico , Curva ROC , Fatores de Risco , Índice de Gravidade de Doença , Estados Unidos
20.
Arch Biochem Biophys ; 661: 10-21, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365935

RESUMO

Aberrant protein glycosylation may reflect changes in cell metabolism of type II diabetes mellitus (T2DM) and offers fresh vistas for discovering potential biomarkers. However, the functional significance of T2DM N-glycan alterations is underexplored, since to date, N-glycan profiling studies have been performed in selected populations. Geographically and genetically isolated populations are needed for validation of specific biomarkers. This age-sex matched cross sectional study comprising 232 T2DM patients and 219 controls was conducted in Ghana, Western Africa. Blood plasma samples were collected for clinical assessment after which plasma N-glycans were freed and analysed by ultra-performance liquid chromatography (UPLC). High branching (HB) [W = 46328; q = 0.00072], tri-galactosylated (G3) [W = 44076; q = 0.00096], antennary fucosylated (FUC_A) [W = 43055; q = 0.0000763], and triantennary (TRIA) [W = 44624; q = 0.0025], N-glycan structures were increased in T2DM whereas low branching (LB) [W = 46328; q = 0.00072], non-sialylated (S0) [W = 46929; q = 0.00292], monogalactosylation (G1) [W = 44091; q = 0.0000763], core fucosylation (FUC_C), [W = 46497; q = 0.00096], biantennary galactosylation (A2G) [W = 45663; q = 0.000763], and biantennary (BA) [W = 46376; q = 0.00072], structures were decreased compared to controls. Nine N-glycan peaks (GPs (GP1, GP4, GP7, GP11, GP17, GP19, GP22, GP26, GP29)) were found to predict case status based on Akaike's information criterion (AIC) and Bayesian information criterion (BIC) model selection. Adjusting for age, sex and other co-variates in this model yielded an area under the curve (AUC) of 80.5% with sensitivity of 79% and specificity of 73%, indicating the predicting power of N-glycans as robust biomarkers. Our results show that hyperglycemia influences N-glycan complexities among Ghanaians. N-glycan profiling in distinct populations has affirmed the potentiality of N-glycan profiles as generic biomarkers which may facilitate better prognosis for T2DM.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Polissacarídeos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos Transversais , Feminino , Gana , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA