Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 93(5): 3238-3245, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205830

RESUMO

The avalanche of genomic data generated from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus requires the development of tools to detect and monitor its mutations across the world. Here, we present a webtool, coronapp, dedicated to easily processing user-provided SARS-CoV-2 genomic sequences and visualizing the current worldwide status of SARS-CoV-2 mutations. The webtool allows users to highlight mutations and categorize them by frequency, country, genomic location and effect on protein sequences, and to monitor their presence in the population over time. The tool is available at http://giorgilab.unibo.it/coronannotator/ for the annotation of user-provided sequences. The full code is freely shared at https://github.com/federicogiorgi/giorgilab/tree/master/coronannotator.


Assuntos
Genoma Viral , Mutação , SARS-CoV-2/genética , Sequência de Aminoácidos , COVID-19/virologia , Genômica , Humanos
2.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195652

RESUMO

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Núcleo Celular , Modelos Animais de Doenças , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
3.
Nat Commun ; 14(1): 6777, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880212

RESUMO

Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer. This effect is exacerbated by amino acid shortage, representing a mutant p53-dependent metabolic adaptive response. When cells suffer amino acids scarcity, mutant p53 protein is stabilized and induces metabolic alterations and an amino acid transcriptional program that sustain cancer cell proliferation. In patient-derived tumor organoids, pharmacological targeting of either serine-synthesis-pathway and LAT1-mediated transport synergizes with amino acid shortage in blunting mutant p53-dependent growth. These findings reveal vulnerabilities potentially exploitable for tackling breast tumors bearing missense TP53 mutations.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Feminino , Humanos , Aminoácidos/metabolismo , Aminoácidos Essenciais , Neoplasias da Mama/patologia , Glicina , Transportador 1 de Aminoácidos Neutros Grandes/genética , Serina , Proteína Supressora de Tumor p53/genética
4.
Biochim Biophys Acta Gene Regul Mech ; 1863(6): 194430, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31678629

RESUMO

Transcriptional regulation is a fundamental molecular mechanism involved in almost every aspect of life, from homeostasis to development, from metabolism to behavior, from reaction to stimuli to disease progression. In recent years, the concept of Gene Regulatory Networks (GRNs) has grown popular as an effective applied biology approach for describing the complex and highly dynamic set of transcriptional interactions, due to its easy-to-interpret features. Since cataloguing, predicting and understanding every GRN connection in all species and cellular contexts remains a great challenge for biology, researchers have developed numerous tools and methods to infer regulatory processes. In this review, we catalogue these methods in six major areas, based on the dominant underlying information leveraged to infer GRNs: Coexpression, Sequence Motifs, Chromatin Immunoprecipitation (ChIP), Orthology, Literature and Protein-Protein Interaction (PPI) specifically focused on transcriptional complexes. The methods described here cover a wide range of user-friendliness: from web tools that require no prior computational expertise to command line programs and algorithms for large scale GRN inferences. Each method for GRN inference described herein effectively illustrates a type of transcriptional relationship, with many methods being complementary to others. While a truly holistic approach for inferring and displaying GRNs remains one of the greatest challenges in the field of systems biology, we believe that the integration of multiple methods described herein provides an effective means with which experimental and computational biologists alike may obtain the most complete pictures of transcriptional relationships. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.


Assuntos
Redes Reguladoras de Genes , Software , Sítios de Ligação , Imunoprecipitação da Cromatina , Bases de Dados de Ácidos Nucleicos , Humanos , Motivos de Nucleotídeos , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
5.
Genes (Basel) ; 11(5)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429325

RESUMO

Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Neoplasias/genética , Fatores de Transcrição/genética , Antineoplásicos/uso terapêutico , Histonas/genética , Humanos , Neoplasias/terapia , Especificidade por Substrato/genética
6.
Microbiologyopen ; 8(12): e938, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31573151

RESUMO

Acetogenic bacteria are obligate anaerobes with the ability of converting carbon dioxide and other one-carbon substrates into acetate through the Wood-Ljungdahl (WL) pathway. These substrates are becoming increasingly important feedstock in industrial microbiology. The main potential industrial application of acetogenic bacteria is the production of metabolites that constitute renewable energy sources (biofuel); such bacteria are of particular interest for this purpose thanks to their low energy requirements for large-scale cultivation. Here, we report new genome sequences for four species, three of them are reported for the first time, namely Acetobacterium paludosum DSM 8237, Acetobacterium tundrae DSM 917, Acetobacterium bakii DSM 8239, and Alkalibaculum bacchi DSM 221123. We performed a comparative genomic analysis focused on the WL pathway's genes and their encoded proteins, using Acetobacterium woodii as a reference genome. The Average Nucleotide Identity (ANI) values ranged from 70% to 95% over an alignment length of 5.4-6.5 Mbp. The core genome consisted of 363 genes, whereas the number of unique genes in a single genome ranged from 486 in A. tundrae to 2360 in A.bacchi. No significant rearrangements were detected in the gene order for the Wood-Ljungdahl pathway however, two species showed variations in genes involved in formate metabolism: A. paludosum harbor two copies of fhs1, and A. bakii a truncated fdhF1. The analysis of protein networks highlighted the expansion of protein orthologues in A. woodii compared to A. bacchi, whereas protein networks involved in the WL pathway were more conserved. This study has increased our understanding on the evolution of the WL pathway in acetogenic bacteria.


Assuntos
Acetatos/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Dióxido de Carbono/metabolismo , Genoma Bacteriano , Genômica , Redes e Vias Metabólicas , Análise por Conglomerados , Estudo de Associação Genômica Ampla , Genômica/métodos , Família Multigênica , Mapeamento de Interação de Proteínas
7.
Sci Rep ; 9(1): 2818, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808981

RESUMO

Erwinia amylovora is the etiological agent of fire blight, a devastating disease which is a global threat to commercial apple and pear production. The Erwinia genus includes a wide range of different species belonging to plant pathogens, epiphytes and even opportunistic human pathogens. The aim of the present study is to understand, within the Erwinia genus, the genetic differences between phytopathogenic strains and those strains not reported to be phytopathogenic. The genes related to the hydroxamate siderophores iron uptake have been considered due to their potential druggability. In E. amylovora siderophore-mediated iron acquisition plays a relevant role in the progression of Fire blight. Here we analyzed the taxonomic relations within Erwinia genus and the relevance of the genes related to the siderophore-mediated iron uptake pathway. The results of this study highlight the presence of a well-defined sub-group of Rosaceae infecting species taxonomically and genetically related with a high number of conserved core genes. The analysis of the complete ferrioxamine transport system has led to the identification of two genes exclusively present in the Rosaceae infecting strains.


Assuntos
Desferroxamina/metabolismo , Erwinia/genética , Erwinia/metabolismo , Ferro/metabolismo , Infecções por Enterobacteriaceae , Erwinia/patogenicidade , Compostos Férricos/metabolismo , Genoma Bacteriano , Genômica , Ácidos Hidroxâmicos/metabolismo , Filogenia , Doenças das Plantas , Rosaceae/microbiologia , Análise de Sequência de DNA , Sideróforos/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA