Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(10): e26764, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994667

RESUMO

Presurgical planning prior to brain tumor resection is critical for the preservation of neurologic function post-operatively. Neurosurgeons increasingly use advanced brain mapping techniques pre- and intra-operatively to delineate brain regions which are "eloquent" and should be spared during resection. Functional MRI (fMRI) has emerged as a commonly used non-invasive modality for individual patient mapping of critical cortical regions such as motor, language, and visual cortices. To map motor function, patients are scanned using fMRI while they perform various motor tasks to identify brain networks critical for motor performance, but it may be difficult for some patients to perform tasks in the scanner due to pre-existing deficits. Connectome fingerprinting (CF) is a machine-learning approach that learns associations between resting-state functional networks of a brain region and the activations in the region for specific tasks; once a CF model is constructed, individualized predictions of task activation can be generated from resting-state data. Here we utilized CF to train models on high-quality data from 208 subjects in the Human Connectome Project (HCP) and used this to predict task activations in our cohort of healthy control subjects (n = 15) and presurgical patients (n = 16) using resting-state fMRI (rs-fMRI) data. The prediction quality was validated with task fMRI data in the healthy controls and patients. We found that the task predictions for motor areas are on par with actual task activations in most healthy subjects (model accuracy around 90%-100% of task stability) and some patients suggesting the CF models can be reliably substituted where task data is either not possible to collect or hard for subjects to perform. We were also able to make robust predictions in cases in which there were no task-related activations elicited. The findings demonstrate the utility of the CF approach for predicting activations in out-of-sample subjects, across sites and scanners, and in patient populations. This work supports the feasibility of the application of CF models to presurgical planning, while also revealing challenges to be addressed in future developments. PRACTITIONER POINTS: Precision motor network prediction using connectome fingerprinting. Carefully trained models' performance limited by stability of task-fMRI data. Successful cross-scanner predictions and motor network mapping in patients with tumor.


Assuntos
Conectoma , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Cuidados Pré-Operatórios , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Adulto , Cuidados Pré-Operatórios/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Atividade Motora/fisiologia , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Aprendizado de Máquina , Adulto Jovem
2.
Neuroimage ; 281: 120360, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717715

RESUMO

The cerebellum is gaining scientific attention as a key neural substrate of cognitive function; however, individual differences in the cerebellar organization have not yet been well studied. Individual differences in functional brain organization can be closely tied to individual differences in brain connectivity. 'Connectome Fingerprinting' is a modeling approach that predicts an individual's brain activity from their connectome. Here, we extend 'Connectome Fingerprinting' (CF) to the cerebellum. We examined functional MRI data from 160 subjects (98 females) of the Human Connectome Project young adult dataset. For each of seven cognitive task paradigms, we constructed CF models from task activation maps and resting-state cortico-cerebellar functional connectomes, using a set of training subjects. For each model, we then predicted task activation in novel individual subjects, using their resting-state functional connectomes. In each cognitive paradigm, the CF models predicted individual subject cerebellar activity patterns with significantly greater precision than did predictions from the group average task activation. Examination of the CF models revealed that the cortico-cerebellar connections that carried the most information were those made with the non-motor portions of the cerebral cortex. These results demonstrate that the fine-scale functional connectivity between the cerebral cortex and cerebellum carries important information about individual differences in cerebellar functional organization. Additionally, CF modeling may be useful in the examination of patients with cerebellar dysfunction, since model predictions require only resting-state fMRI data which is more easily obtained than task fMRI.

3.
Neuroimage ; 251: 118940, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121184

RESUMO

The brain's Default mode network (DMN) is generally characterized by brain areas that gets deactivated upon the presentation of a wide variety of externally focused, attention demanding tasks. These areas also exhibit significant intra-DMN functional connectivity and significant negative functional connectivity with other brain areas, especially with attention networks, in both resting state and task conditions. Therefore, the DMN has been hypothesized to be involved in internally directed cognitive activities such as autobiographical recall of the past, future planning and mind wandering. Recent research has discovered the role of bottom-up attention in modulating the behaviour of DMN. We hypothesize that the de-engagement of the DMN regions upon the presentation of an externally-focused attention-demanding stimulus may not be strictly stimulus locked and may exhibit significant trial-to-trial as well as subject-to-subject variability. Due to the involvement of frontoparietal control network in modulating the anticorrelations between DMN and dorsal attention network (DAN), we expect the DMN regions to have lower inter-trial and inter-subject synchronization in their fMRI BOLD responses as compared to the bottom-up early-sensory task-positive regions. To test this hypothesis, we designed new statistical methods called Inter Trial Temporal Synchronization Analysis (IT-TSA) and Inter Subject TSA (IS-TSA) to analyse variability across trials and subjects respectively. We analysed four publicly available datasets (total 223 subjects) across seven tasks related to different cognitive modalities and found out that there is significantly low stimulus-locked synchronization across trials and subjects in the DMN regions as compared to early sensory task positive regions. Our study challenges the understanding of DMN as a strictly task-negative region and supports the recent findings that DMN acts as an active component associated with intrinsic processing which deactivates differentially and non-linearly across trials and subjects in the presence of extrinsic processes.


Assuntos
Mapeamento Encefálico , Rede de Modo Padrão , Encéfalo/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38709408

RESUMO

Quantifying flood risks through a cascade of hydraulic-cum-hydrodynamic modelling is data-intensive and computationally demanding- a major constraint for economically struggling and data-scarce low and middle-income nations. Under such circumstances, geomorphic flood descriptors (GFDs), that encompass the hidden characteristics of flood propensity may assist in developing a nuanced understanding of flood risk management. In line with this, the present study proposes a novel framework for estimating flood hazard and population exposure by leveraging GFDs and Machine Learning (ML) models over severely flood-prone Ganga basin. The study incorporates SHapley Additive exPlanations (SHAP) values in flood hazard modeling to justify the degree of influence of each GFD on the simulated floodplain maps. A set of 15 relevant GFDs derived from high-resolution CartoDEM are forced to five state-of-the-art ML models; AdaBoost, Random Forest, GBDT, XGBoost, and CatBoost, for predicting flood extents and depths. To enumerate the performance of ML models, a set of twelve statistical metrics are considered. Our result indicates a superior performance of XGBoost (κ = 0.72 and KGE = 82%) over other ML models in flood extent and flood depth prediction, resulting in about 47% of the population exposure to high-flood risks. The SHAP summary plots reveal a pre-dominance of Height Above Nearest Drainage during flood depth prediction. The study contributes significantly in comprehending our understanding of catchment characteristics and its influence in the process of sustainable disaster risk reduction. The results obtained from the study provide valuable recommendations for efficient flood management and mitigation strategies, especially over global data-scarce flood-prone basins.

5.
Sci Rep ; 14(1): 12957, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839877

RESUMO

Yoga nidra (YN) practice aims to induce a deeply relaxed state akin to sleep while maintaining heightened awareness. Despite the growing interest in its clinical applications, a comprehensive understanding of the underlying neural correlates of the practice of YN remains largely unexplored. In this fMRI investigation, we aim to discover the differences between wakeful resting states and states attained during YN practice. The study included individuals experienced in meditation and/or yogic practices, referred to as 'meditators' (n = 30), and novice controls (n = 31). The GLM analysis, based on audio instructions, demonstrated activation related to auditory cues without concurrent default mode network (DMN) deactivation. DMN seed based functional connectivity (FC) analysis revealed significant reductions in connectivity among meditators during YN as compared to controls. We did not find differences between the two groups during the pre and post resting state scans. Moreover, when DMN-FC was compared between the YN state and resting state, meditators showed distinct decoupling, whereas controls showed increased DMN-FC. Finally, participants exhibit a remarkable correlation between reduced DMN connectivity during YN and self-reported hours of cumulative meditation and yoga practice. Together, these results suggest a unique neural modulation of the DMN in meditators during YN which results in being restful yet aware, aligned with their subjective experience of the practice. The study deepens our understanding of the neural mechanisms of YN, revealing distinct DMN connectivity decoupling in meditators and its relationship with meditation and yoga experience. These findings have interdisciplinary implications for neuroscience, psychology, and yogic disciplines.


Assuntos
Imageamento por Ressonância Magnética , Meditação , Yoga , Humanos , Feminino , Masculino , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Mapeamento Encefálico , Conectoma , Adulto Jovem
6.
medRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39281738

RESUMO

INTRODUCTION: Autosomal Dominant Alzheimer's Disease (ADAD) through genetic mutations can result in near complete expression of the disease. Tracking AD pathology development in an ADAD cohort of Presenilin-1 (PSEN1) E280A carriers' mutation has allowed us to observe incipient tau tangles accumulation as early as 6 years prior to symptom onset. METHODS: Resting-state functional Magnetic Resonance Imaging (fMRI) and Positron-Emission Tomography (PET) scans were acquired in a group of PSEN1 carriers (n=32) and non-carrier family members (n=35). We applied Connectome-based Predictive Modeling (CPM) to examine the relationship between the participant's functional connectome and their respective tau/amyloid-ß levels and cognitive scores (word list recall). RESULTS: CPM models strongly predicted tau concentrations and cognitive scores within the carrier group. The connectivity patterns between the temporal cortex, default mode network, and other memory networks were the most informative of tau burden. DISCUSSION: These results indicate that resting-state fMRI methods can complement PET methods in early detection and monitoring of disease progression in ADAD.

7.
Neurosci Conscious ; 2021(2): niab030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925910

RESUMO

Yoga as a practice and philosophy of life has been followed for more than 4500 years with known evidence of yogic practices in the Indus Valley Civilization. The last few decades have seen a resurgence in the utility of yoga and meditation as a practice with growing scientific evidence behind it. Significant scientific literature has been published, illustrating the benefits of yogic practices including 'asana', 'pranayama' and 'dhyana' on mental and physical well-being. Electrophysiological and recent functional magnetic resonance imaging (fMRI) studies have found explicit neural signatures for yogic practices. In this article, we present a review of the philosophy of yoga, based on the dualistic 'Sankhya' school, as applied to consciousness summarized by Patanjali in his yoga sutras followed by a discussion on the five 'vritti' (modulations of mind), the practice of 'pratyahara', 'dharana', 'dhyana', different states of 'samadhi', and 'samapatti'. We formulate the yogic theory of consciousness (YTC), a cohesive theory that can model both external modulations and internal states of the mind. We propose that attention, sleep and mind wandering should be understood as unique modulatory states of the mind. YTC allows us to model the external states, internal states of meditation, 'samadhi' and even the disorders of consciousness. Furthermore, we list some testable neuroscientific hypotheses that could be answered using YTC and analyse the benefits, outcomes and possible limitations.

8.
Intell Based Med ; 5: 100037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179856

RESUMO

At the onset of 2020, the world saw the rise and spread of a global pandemic named COVID-19 which caused numerous deaths and affected millions of people around the world. Due to its highly contagious nature, this disease spread across the world within a short span of time. It forced almost all the nations to implement strict social distancing rules along with use of face masks to reduce the risk of getting infected. While the virus is still on loose, markets and business firms have reopened to keep the economy alive. This calls for modification of existing technological models to cater for the safety of individuals and stop the spread of virus in public places. One such stringent implementation to achieve this safety would be deployment of a mask detection model. The proposed mask detection models can serve as a vital utility in the coming years for ensuring proper enforcement of safety protocols. This research paper explores the use of state of the art YOLOv3 model, a deep transfer learning object detection technique, to develop a mask detection model. Along with the implementation of a standard approach of any object detection algorithm, this paper has proposed the use of a data augmentation approach for mask detection. The proposed model focuses on generating an augmented dataset from the standard dataset with the help of data augmentation done by using image filtering techniques such as grayscale and Gaussian blur. This augmented dataset is used for training the object detection model for mask detection. The mean average precision for the Data augmentation based mask detection model is observed to be 99.8% while training. Finally, a comparison on the model performance is evaluated for the standard and proposed augmented data approach. The experiment conducted showed that the average confidence level for Standard mask detection model was 0.94, 0.93, 0.91 for images of individuals (type A), images with groups of people (type B) and video with the group of people (type C) respectively. The average confidence levels for the Data augmentation based mask detection model for types A, B and C are 0.97, 0.96 0.93 respectively. This paper therefore concludes that the proposed Data augmentation based mask detection model performs better than the Standard mask detection model.

9.
Brain Sci ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946661

RESUMO

Meditation experience has previously been shown to improve performance on behavioral assessments of attention, but the neural bases of this improvement are unknown. Two prominent, strongly competing networks exist in the human cortex: a dorsal attention network, that is activated during focused attention, and a default mode network, that is suppressed during attentionally demanding tasks. Prior studies suggest that strong anti-correlations between these networks indicate good brain health. In addition, a third network, a ventral attention network, serves as a "circuit-breaker" that transiently disrupts and redirects focused attention to permit salient stimuli to capture attention. Here, we used functional magnetic resonance imaging to contrast cortical network activation between experienced focused attention Vipassana meditators and matched controls. Participants performed two attention tasks during scanning: a sustained attention task and an attention-capture task. Meditators demonstrated increased magnitude of differential activation in the dorsal attention vs. default mode network in a sustained attention task, relative to controls. In contrast, there were no evident attention network differences between meditators and controls in an attentional reorienting paradigm. A resting state functional connectivity analysis revealed a greater magnitude of anticorrelation between dorsal attention and default mode networks in the meditators as compared to both our local control group and a n = 168 Human Connectome Project dataset. These results demonstrate, with both task- and rest-based fMRI data, increased stability in sustained attention processes without an associated attentional capture cost in meditators. Task and resting-state results, which revealed stronger anticorrelations between dorsal attention and default mode networks in experienced mediators than in controls, are consistent with a brain health benefit of long-term meditation practice.

10.
Int J Yoga ; 13(2): 130-136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32669767

RESUMO

CONTEXT: Respiration is known to modulate neuronal oscillations in the brain and is measured by electroencephalogram (EEG). Sudarshan Kriya Yoga (SKY) is a popular breathing process and is established for its significant effects on the various aspects of physiology and psychology. AIMS: This study aimed to observe neuronal oscillations in multifrequency bands and interhemispheric synchronization following SKY. SETTINGS AND DESIGN: This study employed before- and after-study design. SUBJECTS AND METHODS: Forty healthy volunteers (average age 25.45 ± 5.75, 23 males and 17 females) participated in the study. Nineteen-channel EEG was recorded and analyzed for 5 min each: before and after SKY. Spectral power for delta, theta, alpha, beta, and gamma frequency band was calculated using Multi-taper Fast Fourier Transform (Chronux toolbox). The Asymmetry Index was calculated by subtracting the natural log of powers of left (L) hemisphere from the right® to show interhemispheric synchronization. STATISTICAL ANALYSIS: Paired t-test was used for statistical analysis. RESULTS: Spectral power increased significantly in all frequency bands bilaterally in frontal, central, parietal, temporal, and occipital regions of the brain after long SKY. Electrical activity shifted from lower to higher frequency range with a significant rise in the gamma and beta powers following SKY. Asymmetry Index values tended toward 0 following SKY. CONCLUSIONS: A single session of SKY generates global brain rhythm dominantly with high-frequency cerebral activation and initiates appropriate interhemispheric synchronization in brain rhythms as state effects. This suggests that SKY leads to better attention, memory, and emotional and autonomic control along with enhanced cognitive functions, which finally improves physical and mental well-being.

11.
Indian J Psychol Med ; 35(4): 402-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24379505

RESUMO

Charles Bonnet syndrome (CBS) is not uncommon disorder. It may not present with all typical symptoms and intact insight. Here, a case of atypical CBS is reported where antipsychotics were not effective. Patient improved completely after restoration of vision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA