Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell Mol Life Sci ; 81(1): 193, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652325

RESUMO

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.


Assuntos
Acetiltransferases , Proteínas dos Microtúbulos , Tubulina (Proteína) , Humanos , Acetiltransferases/metabolismo , Acetiltransferases/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Animais , Processamento de Proteína Pós-Traducional , Acetilação , Microtúbulos/metabolismo , Mitose , Movimento Celular , Neoplasias/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Citoesqueleto/metabolismo
2.
Eur J Neurol ; 30(6): 1734-1744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36815539

RESUMO

BACKGROUND AND PURPOSE: Microtubule defects are a common feature in several neurodegenerative disorders, including hereditary spastic paraplegia. The most frequent form of hereditary spastic paraplegia is caused by mutations in the SPG4/SPAST gene, encoding the microtubule severing enzyme spastin. To date, there is no effective therapy available but spastin-enhancing therapeutic approaches are emerging; thus prognostic and predictive biomarkers are urgently required. METHODS: An automated, simple, fast and non-invasive cell imaging-based method was developed to quantify microtubule cytoskeleton organization changes in lymphoblastoid cells and peripheral blood mononuclear cells. RESULTS: It was observed that lymphoblastoid cells and peripheral blood mononuclear cells from individuals affected by SPG4-hereditary spastic paraplegia show a polarized microtubule cytoskeleton organization. In a pilot study on freshly isolated peripheral blood mononuclear cells, our method discriminates SPG4-hereditary spastic paraplegia from healthy donors and other hereditary spastic paraplegia subtypes. In addition, it is shown that our method can detect the effects of spastin protein level changes. CONCLUSIONS: These findings open the possibility of a rapid, non-invasive, inexpensive test useful to recognize SPG4-hereditary spastic paraplegia subtype and evaluate the effects of spastin-enhancing drug in non-neuronal cells.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Espastina/genética , Leucócitos Mononucleares , Projetos Piloto , Mutação
3.
J Enzyme Inhib Med Chem ; 38(1): 2163242, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629431

RESUMO

Androgen deprivation therapy (ADT) is a common treatment for recurrent prostate cancer (PC). However, after a certain period of responsiveness, ADT resistance occurs virtually in all patients and the disease progresses to lethal metastatic castration-resistant prostate cancer (mCRPC). Aberrant expression and function of the epigenetic modifiers EZH2 and BET over activates c-myc, an oncogenic transcription factor critically contributing to mCRPC. In the present work, we tested, for the first time, the combination of an EZH2 inhibitor with a BET inhibitor in metastatic PC cells. The combination outperformed single drugs in inhibiting cell viability, cell proliferation and clonogenic ability, and concomitantly reduced both c-myc and NF-kB expression. Although these promising results will warrant further in vivo validation, they represent the first step to establishing the rationale that the proposed combination might be suitable for mCRPC treatment, by exploiting molecular targets different from androgen receptor.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição , Betaína-Homocisteína S-Metiltransferase/antagonistas & inibidores , Betaína-Homocisteína S-Metiltransferase/metabolismo
4.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884931

RESUMO

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


Assuntos
Aurora Quinase A/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Azepinas/metabolismo , Azepinas/farmacologia , Benzazepinas/metabolismo , Benzazepinas/farmacologia , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Proteína Proto-Oncogênica N-Myc/química , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirróis/metabolismo , Ressonância de Plasmônio de Superfície
5.
Cancer Sci ; 110(4): 1232-1243, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30588710

RESUMO

JARID1B/KDM5B histone demethylase's mRNA is markedly overexpressed in breast cancer tissues and cell lines and the protein has been shown to have a prominent role in cancer cell proliferation and DNA repair. However, the mechanism of its post-transcriptional regulation in cancer cells remains elusive. We performed a computational analysis of transcriptomic data from a set of 103 breast cancer patients, which, along with JARID1B upregulation, showed a strong downregulation of 2 microRNAs (miRNAs), mir-381 and mir-486, potentially targeting its mRNA. We showed that both miRNAs can target JARID1B 3'UTR and reduce luciferase's activity in a complementarity-driven repression assay. Moreover, MCF7 breast cancer cells overexpressing JARID1B showed a strong protein reduction when transfected with mir-486. This protein's decrease is accompanied by accumulation of DNA damage, enhanced radiosensitivity and increase of BRCA1 mRNA, 3 features previously correlated with JARID1B silencing. These results enlighten an important role of a miRNA's circuit in regulating JARID1B's activity and suggest new perspectives for epigenetic therapies.


Assuntos
Neoplasias da Mama/genética , Dano ao DNA , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Interferência de RNA , Tolerância a Radiação/genética , Reprodutibilidade dos Testes , Transcriptoma
6.
Carcinogenesis ; 38(6): 579-587, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28203756

RESUMO

Bcl-2 protein family is constituted by multidomain members originally identified as modulators of programmed cell death and whose expression is frequently misbalanced in cancer cells. The lead member Bcl-2 and its homologue Bcl-xL proteins are characterized by the presence of all four conserved BH domain and exert their antiapoptotic role mainly through the involvement of BH1, BH2 and BH3 homology domains, that mediate the interaction with the proapoptotic members of the same Bcl-2 family. The N-terminal BH4 domain of Bcl-2 and Bcl-xL is responsible for the interaction with other proteins that do not belong to Bcl-2 protein family. Beyond a classical role in inhibiting apoptosis, BH4 domain has been characterized as a crucial regulator of other important cellular functions attributed to Bcl-2 and Bcl-xL, including proliferation, autophagy, differentiation, DNA repair, cell migration, tumor progression and angiogenesis. During the last two decades a strong effort has been made to dissect the molecular pathways involved the capability of BH4 domain to regulate the canonical antiapoptotic and the non-canonical activities of Bcl-2 and Bcl-xL, creating the basis for the development of novel anticancer agents targeting this domain. Indeed, recent evidences obtained on in vitro and in vivo model of different cancer histotypes are confirming the promising therapeutic potential of BH4 domain inhibitors supporting their future employment as a novel anticancer strategy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteína bcl-X/fisiologia , Animais , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Domínios Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética
7.
J Enzyme Inhib Med Chem ; 32(1): 614-623, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28234548

RESUMO

To identify the metabolite distribution in ascidian, we have applied an integrated liquid chromatography- tandem mass spectrometry (LC-MS) metabolomics approach to explore and identify patterns in chemical diversity of invasive ascidian Styela plicata. A total of 71 metabolites were reported among these alkaloids, fatty acids and lipids are the most dominant chemical group. Multivariate statistical analysis, principal component analysis (PCA) showed a clear separation according to chemical diversity and taxonomic groups. PCA and partial least square discriminant analysis were applied to discriminate the chemical group of S. plicata crude compounds and classify the compounds with unknown biological activities. In this study, we reported for the first time that a partially purified methanol extract prepared from the ascidian S. plicata and Ascidia mentula possess antitumor activity against four tumor cell lines with different tumor histotype, such as HeLa (cervical carcinoma), HT29 (colon carcinoma), MCF-7 (breast carcinoma) and M14 (melanoma). S. plicata fraction SP-50 showed strong inhibition of cell proliferation and induced apoptosis in HeLa and HT29 cells, thus indicating S. plicata fraction SP-50 a potential lead compound for anticancer therapy. The molecular mechanism of action and chemotherapeutic potential of these ascidian unknown biomolecules need further research.


Assuntos
Antineoplásicos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Urocordados/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Análise Multivariada
8.
Mol Carcinog ; 55(12): 2304-2312, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26599548

RESUMO

Melanoma, the most lethal form of skin cancer, is frequently associated with alterations in several genes, among which the Bcl-2 oncogene plays an important role in progression, chemosensitivity and angiogenesis. Also microRNA (miRNA) are emerging as modulators of melanoma development and progression, and among them, miR-211, located within the melastatin-1/TRPM1 (transient receptor potential cation channel, subfamily M, member 1 protein) gene, is prevalently expressed in the melanocyte lineage and acts as oncosuppressor. Using several human melanoma cell lines and their Bcl-2 stably overexpressing derivatives, we evaluated whether there was a correlation between expression of Bcl-2 and miR-211. Western blot analysis and quantitative real-time polymerase chain reaction demonstrated reduced expression of pri-miR-211, miR-211, TRPM1, and MLANA levels, after Bcl-2 overexpression, associated with increased expression of well-known miR-211 target genes. Overexpression of mature miR-211 in Bcl-2 overexpressing cells rescued Bcl-2 ability to increase cell migration. A decreased nuclear localization of microphthalmia-associated transcription factor (MITF), a co-regulator of both miR-211 and TRPM1, and a reduced MITF recruitment at the TRPM1 and MLANA promoters were also evidenced in Bcl-2 overexpressing cells by immunofluorescence and chromatin immunoprecipitation experiments, respectively. Reduction of Bcl-2 expression by small interference RNA confirmed the ability of Bcl-2 to modulate miR-211 and TRPM1 expression. © 2015 Wiley Periodicals, Inc.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , MicroRNAs/genética , Fator de Transcrição Associado à Microftalmia/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Movimento Celular , Humanos , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
9.
Mol Cancer ; 13: 230, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25301686

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Pemetrexed, a multi-target folate antagonist, has demonstrated efficacy in NSCLC histological subtypes characterized by low thymidylate synthase (TS) expression. Among many other potential targets, histone deacetylase inhibitors (HDACi) modulate TS expression, potentially sensitizing to the cytotoxic action of anti-cancer drugs that target the folate pathway, such as pemetrexed. Since high levels of TS have been linked to clinical resistance to pemetrexed in NSCLC, herein we investigated the molecular and functional effects of combined pemetrexed and ITF2357, a pan-HDACi currently in clinical trials as an anti-cancer agent. RESULTS: In NSCLC cell lines, HDAC inhibition by ITF2357 induced histone and tubulin acetylation and downregulated TS expression at the mRNA and protein level. In combination experiments in vitro ITF2357 and pemetrexed demonstrated sequence-dependent synergistic growth-inhibitory effects, with the sequence pemetrexed followed by ITF2357 inducing a strikingly synergistic reduction in cell viability and induction of both apoptosis and autophagy in all cell line models tested, encompassing both adenocarcinoma and squamous cell carcinoma. Conversely, simultaneous administration of both drugs achieved frankly antagonistic effects, while the sequence of ITF2357 followed by pemetrexed had additive to slightly synergistic growth-inhibitory effects only in certain cell lines. Similarly, highly synergistic growth inhibition was also observed in patient-derived lung cancer stem cells (LCSC) exposed to pemetrexed followed by ITF2357. In terms of molecular mechanisms of interaction, the synergistic growth-inhibitory effects observed were only partially related to TS modulation by ITF2357, as genetic silencing of TS expression potentiated growth inhibition by either pemetrexed or ITF2357 and, to a lesser extent, by their sequential combination. Genetic and pharmacological approaches provided an interesting link between the autophagic and apoptotic pathways, and showed that sequential pemetrexed/ITF2357 causes a toxic form of autophagy with consequent activation of a caspase-dependent apoptotic program. In vivo experiments in NSCLC xenografts confirmed that sequential pemetrexed/ITF2357 is feasible and results in increased inhibition of tumor growth and increased mice survival. CONCLUSIONS: Overall, these data provide a strong rationale for the clinical development of sequential schedules employing pemetrexed followed by HDACi in NSCLC.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Glutamatos/farmacologia , Guanina/análogos & derivados , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pulmonares/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Inativação Gênica/efeitos dos fármacos , Guanina/farmacologia , Humanos , Neoplasias Pulmonares/enzimologia , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pemetrexede , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Death Dis ; 15(5): 358, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777849

RESUMO

Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of ß-arrestin1 (ß-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/ß-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin ß1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or ß-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/ß-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Podossomos , beta-Arrestina 1 , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Podossomos/metabolismo , Endotelina-1/metabolismo , Metástase Neoplásica , Receptor de Endotelina A/metabolismo , Transdução de Sinais , Matriz Extracelular/metabolismo , Movimento Celular , Proliferação de Células , Animais , Fibroblastos/metabolismo , Invasividade Neoplásica
12.
Carcinogenesis ; 34(11): 2558-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23836782

RESUMO

Beyond its classical role as apoptosis inhibitor, bcl-2 protein promotes tumor angiogenesis and the removal of N-terminal bcl-2 homology (BH4) domain abrogates bcl-2-induced hypoxia-inducible factor 1 (HIF-1)-mediated vascular endothelial growth factor (VEGF) expression in hypoxic cancer cells. Using M14 human melanoma cell line and its derivative clones stably overexpressing bcl-2 wild-type or deleted of its BH4 domain, we found that conditioned media (CM) from cells expressing BH4-deleted bcl-2 protein showed a reduced capability to increase in vitro human endothelial cells proliferation and differentiation, and in vivo neovascularization compared with CM from cells overexpressing wild-type bcl-2. Moreover, xenografts derived from cells expressing bcl-2 lacking BH4 domain showed a reduction of metastatic potential compared with tumors derived from wild-type bcl-2 transfectants injection. Stably expressing the Flag-tagged N-terminal sequence of bcl-2 protein, encompassing BH4 domain, we found that this domain is sufficient to enhance the proangiogenic HIF-1/VEGF axis under hypoxic condition. Indeed, lacking of BH4 domain abolishes the interaction between bcl-2 and HIF-1α proteins and the capability of exogenous bcl-2 protein to localize in the nucleus. Moreover, when endoplasmic reticulum-targeted bcl-2 protein is overexpressed in cells, this protein lost the capability to synergize with hypoxia to induce the proangiogenic HIF-1/VEGF axis as shown by wild-type bcl-2 protein. These results demonstrate that BH4 domain of bcl-2 is required for the ability of this protein to increase tumor angiogenesis and progression and indicate that bcl-2 nuclear localization may be required for bcl-2-mediated induction of HIF-1/VEGF axis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia , Neoplasias Pulmonares/secundário , Melanoma/patologia , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização
13.
Autophagy ; 19(7): 2078-2093, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36704963

RESUMO

Macroautophagy/autophagy has been shown to exert a dual role in cancer i.e., promoting cell survival or cell death depending on the cellular context and the cancer stage. Therefore, development of potent autophagy modulators, with a clear mechanistic understanding of their target action, has paramount importance in both mechanistic and clinical studies. In the process of exploring the mechanism of action of a previously identified cytotoxic small molecule (SM15) designed to target microtubules and the interaction domain of microtubules and the kinetochore component NDC80/HEC1, we discovered that the molecule acts as a potent autophagy inhibitor. By using several biochemical and cell biology assays we demonstrated that SM15 blocks basal autophagic flux by inhibiting the fusion of correctly formed autophagosomes with lysosomes. SM15-induced autophagic flux blockage promoted apoptosis-mediated cell death associated with ROS production. Interestingly, autophagic flux blockage, apoptosis induction and ROS production were rescued by genetic or pharmacological inhibition of OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) or by expressing an O-GlcNAcylation-defective mutant of the SNARE fusion complex component SNAP29, pointing to SNAP29 as the molecular target of SM15 in autophagy. Accordingly, SM15 was found to enhance SNAP29 O-GlcNAcylation and, thereby, inhibit the formation of the SNARE fusion complex. In conclusion, these findings identify a new pathway in autophagy connecting O-GlcNAcylated SNAP29 to autophagic flux blockage and autophagosome accumulation, that, in turn, drives ROS production and apoptotic cell death. Consequently, modulation of SNAP29 activity may represent a new opportunity for therapeutic intervention in cancer and other autophagy-associated diseases.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Autofagia/fisiologia , Macroautofagia , Espécies Reativas de Oxigênio/metabolismo , Lisossomos/metabolismo , Proteínas SNARE/metabolismo , Apoptose
14.
Cancer Gene Ther ; 30(1): 124-136, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117234

RESUMO

p300/CBP histone acetyltransferases (HAT) are critical transcription coactivators involved in multiple cellular activities. They act at multiple levels in non-small cell lung carcinoma (NSCLC) and appear, therefore, as promising druggable targets. Herein, we investigated the biological effects of A-485, the first selective (potent) drug-like HAT catalytic inhibitor of p300/CBP, in human NSCLC cell lines. A-485 treatment specifically reduced p300/CBP-mediated histone acetylation marks and caused growth arrest of lung cancer cells via activation of the autophagic pathway. Indeed, A-485 growth-arrested cells displayed phenotypic markers of cell senescence and failed to form colonies. Notably, disruption of autophagy by genetic and pharmacological approaches triggered apoptotic cell death. Mechanistically, A-485-induced senescence occurred through the accumulation of reactive oxygen species (ROS), which in turn resulted in DNA damage and activation of the autophagic pathway. Interestingly, ROS scavengers were able to revert senescence phenotype and restore cell viability, suggesting that ROS production had a key role in upstream events leading to growth arrest commitment. Altogether, our data provide new insights into the biological effects of the A-485 and uncover the importance of the autophagic/apoptotic response to design a new combinatorial anticancer strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Autofagia , Oxirredução
15.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201453

RESUMO

BACKGROUND: Although autophagy is a pro-survival process of tumor cells, it can stimulate cell death in particular conditions and when differently regulated by specific signals. We previously demonstrated that the selective stimulation of the M2 muscarinic receptor subtype (mAChR) negatively controls cell proliferation and survival and causes oxidative stress and cytotoxic and genotoxic effects in both GBM cell lines and GBM stem cells (GSCs). In this work, we have evaluated whether autophagy was induced as a downstream mechanism of the observed cytotoxic processes induced by M2 mAChR activation by the orthosteric agonist APE or the dualsteric agonist N8-Iper (N8). METHODS: To assess the activation of autophagy, we analyzed the expression of LC3B using Western blot analysis and in LC3B-EGFP transfected cell lines. Apoptosis was assessed by measuring the protein expression of Caspases 3 and 9. RESULTS: Our data indicate that activation of M2 mAChR by N8 promotes autophagy in both U251 and GB7 cell lines as suggested by the LC3B-II expression level and analysis of the transfected cells by fluorescence microscopy. Autophagy induction by M2 mAChRs is regulated by the decreased activity of the PI3K/AKT/mTORC1 pathway and upregulated by pAMPK expression. Downstream of autophagy activation, an increase in apoptosis was also observed in both cell lines after treatment with the two M2 agonists. CONCLUSIONS: N8 treatment causes autophagy via pAMPK upregulation, followed by apoptosis in both investigated cell lines. In contrast, the absence of autophagy in APE-treated GSC cells seems to indicate that cell death could be triggered by mechanisms alternative to those observed for N8.

16.
ChemMedChem ; 18(3): e202200510, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250286

RESUMO

Schistosoma mansoni HDAC8 is a reliable target to fight schistosomiasis, and several inhibitors have been reported in the literature up to now. Nevertheless, only a few displayed selectivity over the human deacetylases and some exhibited very low or no activity against parasite larvae and/or adult worms. We report here the in vitro enzyme and biological activity of a small library of HDAC inhibitors from our lab, in many cases exhibiting submicromolar/nanomolar potency against smHDAC8 and diverse degrees of selectivity over hHDAC1 and/or hHDAC6. Such compounds were tested against schistosomula, and a selection of them against the adult forms of S. mansoni, to detect their effect on viability. Some of them showed the highest viability reduction for the larval stage with IC50 values around 1 µM and/or displayed ∼40-50 % activity in adult worms at 10 µM, joined to moderate to no toxicity in human fibroblast MRC-5 cells.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Schistosoma mansoni , Esquistossomose , Adulto , Animais , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Larva/efeitos dos fármacos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomose/tratamento farmacológico , Esquistossomose/genética
17.
Eur J Med Chem ; 246: 114997, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502578

RESUMO

We synthesized a new inhibitor of tubulin polymerization, the pyrrole (1-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrrol-3-yl)(3,4,5-trimethoxy-phenyl)methanone 6 (RS6077). Compound 6 inhibited the growth of multiple cancer cell lines, with IC50 values in the nM range, without affecting the growth of non-transformed cells. The novel agent arrested cells in the G2/M phase of the cell cycle in both transformed and non-transformed cell lines, but single cell analysis by time-lapse video recording revealed a remarkable selectivity in cell death induction by compound 6: in RPE-1 non-transformed cells mitotic arrest induced was not necessarily followed by cell death; in contrast, in HeLa transformed and in lymphoid-derived transformed AHH1 cell lines, cell death was effectively induced during mitotic arrest in cells that fail to complete mitosis. Importantly, the agent also inhibited the growth of the lymphoma TMD8 xenograft model. Together these findings suggest that derivative 6 has a selective efficacy in transformed vs non-transformed cells and indicate that the same compound has potential as novel therapeutic agent to treat lymphomas. Compound 6 showed good metabolic stability upon incubation with human liver microsomes.


Assuntos
Apoptose , Linfoma , Humanos , Morte Celular , Mitose , Células HeLa , Tubulina (Proteína)/metabolismo , Linfoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
18.
J Med Chem ; 66(10): 6591-6616, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37155735

RESUMO

KAT8 is a lysine acetyltransferase primarily catalyzing the acetylation of Lys16 of histone H4 (H4K16). KAT8 dysregulation is linked to the development and metastatization of many cancer types, including non-small cell lung cancer (NSCLC) and acute myeloid leukemia (AML). Few KAT8 inhibitors have been reported so far, none of which displaying selective activity. Based on the KAT3B/KDAC inhibitor C646, we developed a series of N-phenyl-5-pyrazolone derivatives and identified compounds 19 and 34 as low-micromolar KAT8 inhibitors selective over a panel of KATs and KDACs. Western blot, immunofluorescence, and CETSA experiments demonstrated that both inhibitors selectively target KAT8 in cells. Moreover, 19 and 34 exhibited mid-micromolar antiproliferative activity in different cancer cell lines, including NSCLC and AML, without impacting the viability of nontransformed cells. Overall, these compounds are valuable tools for elucidating KAT8 biology, and their simple structures make them promising candidates for future optimization studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Leucemia Mieloide Aguda , Neoplasias Pulmonares , Lisina Acetiltransferases , Humanos , Lisina Acetiltransferases/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Histonas/metabolismo , Acetilação , Histona Acetiltransferases/metabolismo
19.
ACS Infect Dis ; 8(7): 1356-1366, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732073

RESUMO

Neglected tropical diseases (NTDs), including trypanosomiasis, leishmaniasis, and schistosomiasis, result in a significant burden in terms of morbidity and mortality worldwide every year. Current antiparasitic drugs suffer from several limitations such as toxicity, no efficacy toward all of the forms of the parasites' life cycle, and/or induction of resistance. Histone-modifying enzymes play a crucial role in parasite growth and survival; thus, the use of epigenetic drugs has been suggested as a strategy for the treatment of NTDs. We tested structurally different HDACi 1-9, chosen from our in-house library or newly synthesized, against Trypanosoma cruzi, Leishmania spp, and Schistosoma mansoni. Among them, 4 emerged as the most potent against all of the tested parasites, but it was too toxic against host cells, hampering further studies. The retinoic 2'-aminoanilide 8 was less potent than 4 in all parasitic assays, but as its toxicity is considerably lower, it could be the starting structure for further development. In T. cruzi, compound 3 exhibited a single-digit micromolar inhibition of parasite growth combined with moderate toxicity. In S. mansoni, 4's close analogs 17-20 were tested in new transformed schistosomula (NTS) and adult worms displaying high death induction against both parasite forms. Among them, 17 and 19 exhibited very low toxicity in human retinal pigment epithelial (RPE) cells, thus being promising compounds for further optimization.


Assuntos
Doença de Chagas , Leishmania , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Inibidores de Histona Desacetilases/farmacologia , Schistosoma mansoni
20.
Theranostics ; 12(5): 2427-2444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265218

RESUMO

Bcl-2 family anti-apoptotic proteins are overexpressed in several hematological and solid tumors, and contribute to tumor formation, progression, and resistance to therapy. They represent a promising therapeutic avenue to explore for cancer treatment. Venetoclax, a Bcl-2 inhibitor is currently used for hematological malignancies or is undergoing clinical trials for either hematological or solid tumors. Despite these progresses, ongoing efforts are focusing on the identification and development of new molecules targeting Bcl-2 protein and/or other family members. Methods: Machine learning guided virtual screening followed by surface plasmon resonance, molecular docking and pharmacokinetic analyses were performed to identify new inhibitors of anti-apoptotic members of Bcl-2 family and their pharmacokinetic profile. The sensitivity of cancer cells from different origin to the identified compounds was evaluated both in in vitro (cell survival, apoptosis, autophagy) and in vivo (tumor growth in nude mice) preclinical models. Results: IS20 and IS21 were identified as potential new lead compounds able to bind Bcl-2, Bcl-xL and Mcl-1 recombinant proteins. Molecular docking investigation indicated IS20 and IS21 could bind into the Beclin-1 BH3 binding site of wild type Bcl-2, Bcl-xL and Mcl-1 proteins. In particular, although the IS21 docked conformation did not show a unique binding mode, it clearly showed its ability in flexibly adapting to either BH3 binding sites. Moreover, both IS20 and IS21 reduced cell viability, clonogenic ability and tumor sphere formation, and induced apoptosis in leukemic, melanoma and lung cancer cells. Autophagosome formation and maturation assays demonstrated induction of autophagic flux after treatment with IS20 or IS21. Experiments with z-VAD-fmk, a pan-caspase inhibitor, and chloroquine, a late-stage autophagy inhibitor, demonstrated the ability of the two compounds to promote apoptosis by autophagy. IS21 also reduced in vivo tumor growth of both human leukemia and melanoma models. Conclusion: Virtual screening coupled with in vitro and in vivo experimental data led to the identification of two new promising inhibitors of anti-apoptotic proteins with good efficacy in the binding to recombinant Bcl-2, Bcl-xL and Mcl-1 proteins, and against different tumor histotypes.


Assuntos
Proteínas Reguladoras de Apoptose , Melanoma , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Aprendizado de Máquina , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA