RESUMO
Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.
Assuntos
Receptor PAR-2/química , Receptor PAR-2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacologia , Cristalografia por Raios X , Humanos , Imidazóis/química , Imidazóis/farmacologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Cinética , Ligantes , Modelos Moleculares , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacosRESUMO
Millions of individuals are infected with and die from tuberculosis (TB) each year, and multidrug-resistant (MDR) strains of TB are increasingly prevalent. As such, there is an urgent need to identify novel drugs to treat TB infections. Current frontline therapies include the drug isoniazid, which inhibits the essential NADH-dependent enoyl-acyl-carrier protein (ACP) reductase, InhA. To inhibit InhA, isoniazid must be activated by the catalase-peroxidase KatG. Isoniazid resistance is linked primarily to mutations in the katG gene. Discovery of InhA inhibitors that do not require KatG activation is crucial to combat MDR TB. Multiple discovery efforts have been made against InhA in recent years. Until recently, despite achieving high potency against the enzyme, these efforts have been thwarted by lack of cellular activity. We describe here the use of DNA-encoded X-Chem (DEX) screening, combined with selection of appropriate physical properties, to identify multiple classes of InhA inhibitors with cell-based activity. The utilization of DEX screening allowed the interrogation of very large compound libraries (1011 unique small molecules) against multiple forms of the InhA enzyme in a multiplexed format. Comparison of the enriched library members across various screening conditions allowed the identification of cofactor-specific inhibitors of InhA that do not require activation by KatG, many of which had bactericidal activity in cell-based assays.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas PequenasRESUMO
Inhibition of integrin αvß6 is a promising approach to the treatment of fibrotic disease such as idiopathic pulmonary fibrosis. Screening a small library combining head groups that stabilize the bent-closed conformation of integrin αIIbß3 with αv integrin binding motifs resulted in the identification of hit compounds that bind the bent-closed conformation of αvß6. Crystal structures of these compounds bound to αvß6 and related integrins revealed opportunities to increase potency and selectivity, and these efforts were accelerated using accurate free energy perturbation (FEP+) calculations. Optimization of PK parameters including permeability, bioavailability, clearance, and half-life resulted in the discovery of development candidate MORF-627, a highly selective inhibitor of αvß6 that stabilizes the bent-closed conformation and has good oral PK. Unfortunately, the compound showed toxicity in a 28-day NHP safety study, precluding further development. Nevertheless, MORF-627 is a useful tool compound for studying the biology of integrin αvß6.
RESUMO
The generation of multiple bonds in one reaction step has attracted massive interest in drug discovery and development. Multicomponent reactions (MCRs) offer the advantage of combining three or more reagents in a one-pot fashion to effectively yield a synthetic product. This approach significantly accelerates the synthesis of relevant compounds for biological testing. However, there is a perception that this methodology will only produce simple chemical scaffolds with limited use in medicinal chemistry. In this Microperspective, we want to highlight the value of MCRs toward the synthesis of complex molecules characterized by the presence of quaternary and chiral centers. This paper will cover specific examples showing the impact of this technology toward the discovery of clinical compounds and recent breakthroughs to expand the scope of the reactions toward topologically rich molecular chemotypes.
RESUMO
Ni-phosphine complexes were used as catalysts for the cycloaddition of various ketenes and diynes. In general, 2,4-cyclohexadienones were formed instead of products arising from decarbonylation of the ketenes.
Assuntos
Etilenos/química , Cetonas/química , Níquel/química , Catálise , CiclizaçãoRESUMO
We present a reliable and accurate solution to the induced fit docking problem for protein-ligand binding by combining ligand-based pharmacophore docking, rigid receptor docking, and protein structure prediction with explicit solvent molecular dynamics simulations. This novel methodology in detailed retrospective and prospective testing succeeded to determine protein-ligand binding modes with a root-mean-square deviation within 2.5 Å in over 90% of cross-docking cases. We further demonstrate these predicted ligand-receptor structures were sufficiently accurate to prospectively enable predictive structure-based drug discovery for challenging targets, substantially expanding the domain of applicability for such methods.
Assuntos
Simulação de Acoplamento Molecular , Proteínas/química , Ligantes , Ligação ProteicaRESUMO
This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 µg/mL). Lack of activity against E. coli was maintained (IC50 > 20 µM and MIC > 128 µg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.
Assuntos
Aciltransferases/antagonistas & inibidores , Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Cristalografia por Raios X , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
A combination of physical organic experiments and quantum chemical calculations were used to construct a detailed mechanistic model for the Ni(0)-N-heterocyclic carbene-catalyzed vinylcyclopropane-cyclopentene rearrangement that involves a mutistep oxidative addition/haptotropic shift/reductive elimination pathway. No evidence for the intermediacy of radicals or zwitterions was found. The roles of substituents on the vinylcyclopropane substrate and variations in the ligands on Ni were evaluated. It is postulated that bulky carbene ligands facilitate formation of the active catalyst species.
Assuntos
Ciclopentanos/química , Ciclopropanos/química , Níquel/química , Compostos de Vinila/química , Catálise , Estrutura MolecularRESUMO
Studies towards the synthesis of the macrocyclic core of (-)-zampanolide are reported. The synthetic approach features a one-pot reduction/vinylogous aldol reaction for construction of the C15-C20 fragment, an intramolecular silyl-modified Sakurai (ISMS) reaction for construction of the 2,6-cis-disubstituted exo-methylene pyran subunit, and use of an sp2-sp3 Stille reaction for macrocyclization.
RESUMO
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
Assuntos
DNA/genética , Mutação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Linhagem Celular , Células HEK293 , Humanos , Ligantes , Proteínas/genética , Receptor PAR-2 , Receptores Acoplados a Proteínas G/genéticaRESUMO
Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 µM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a ß-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 µM and Bcl-xL at >99 µM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 µM after 6 h.
RESUMO
[This corrects the article DOI: 10.1021/acsmedchemlett.6b00464.].
RESUMO
ATAD2 (ANCCA) is an epigenetic regulator and transcriptional cofactor, whose overexpression has been linked to the progress of various cancer types. Here, we report a DNA-encoded library screen leading to the discovery of BAY-850, a potent and isoform selective inhibitor that specifically induces ATAD2 bromodomain dimerization and prevents interactions with acetylated histones in vitro, as well as with chromatin in cells. These features qualify BAY-850 as a chemical probe to explore ATAD2 biology.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , ATPases Associadas a Diversas Atividades Celulares/química , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Descoberta de Drogas , Histonas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismoRESUMO
[structure: see text] Synthesis of N-acyl hemiaminal model systems related to the side chain of the antitumor natural product zampanolide is reported. Key steps involve oxidative decarboxylation of N-acyl-alpha-amino acid intermediates, followed by ytterbium triflate mediated solvolysis. Evidence for stabilization of the N-acyl hemiaminal moiety in model compounds by an intramolecular hydrogen-bonding network is described.
Assuntos
Antineoplásicos/síntese química , Macrolídeos/síntese química , Modelos Moleculares , Antineoplásicos/química , Macrolídeos/química , Espectroscopia de Ressonância MagnéticaRESUMO
The synthesis of spirocyclic oxindole pyran and oxepene frameworks using highly stereoselective Prins cyclizations of homoallylic and bis-homoallylic alcohols and isatin ketals is described.