Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 630(8015): 116-122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778110

RESUMO

Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.


Assuntos
Evolução Biológica , Estágios do Ciclo de Vida , Mesomycetozoea , Mitose , Filogenia , Animais , Genômica , Mesomycetozoea/genética , Mesomycetozoea/fisiologia , Mesomycetozoea/citologia , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Fuso Acromático/metabolismo , Fungos/classificação
2.
EMBO J ; 43(5): 836-867, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332377

RESUMO

The meiotic chromosome axis coordinates chromosome organization and interhomolog recombination in meiotic prophase and is essential for fertility. In S. cerevisiae, the HORMAD protein Hop1 mediates the enrichment of axis proteins at nucleosome-rich islands through a central chromatin-binding region (CBR). Here, we use cryoelectron microscopy to show that the Hop1 CBR directly recognizes bent nucleosomal DNA through a composite interface in its PHD and winged helix-turn-helix domains. Targeted disruption of the Hop1 CBR-nucleosome interface causes a localized reduction of axis protein binding and meiotic DNA double-strand breaks (DSBs) in axis islands and leads to defects in chromosome synapsis. Synthetic effects with mutants of the Hop1 regulator Pch2 suggest that nucleosome binding delays a conformational switch in Hop1 from a DSB-promoting, Pch2-inaccessible state to a DSB-inactive, Pch2-accessible state to regulate the extent of meiotic DSB formation. Phylogenetic analyses of meiotic HORMADs reveal an ancient origin of the CBR, suggesting that the mechanisms we uncover are broadly conserved.


Assuntos
Meiose , Proteínas de Saccharomyces cerevisiae , Nucleossomos , Microscopia Crioeletrônica , Filogenia , Saccharomyces cerevisiae/genética , DNA , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
EMBO J ; 40(14): e106536, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34009673

RESUMO

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mutação/genética , Spliceossomos/genética , Sequência de Aminoácidos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Íntrons/genética
4.
Proc Natl Acad Sci U S A ; 119(42): e2200108119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36227914

RESUMO

The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin, and Survivin. While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader Survivin have previously only been found in animals and fungi, raising the question of how its essential role is carried out in other eukaryotes. By characterizing proteins that bind to the Arabidopsis Borealin ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as redundant Survivin-like proteins in the context of the CPC in plants. Loss of BORI function is lethal and a reduced expression of BORIs causes severe developmental defects. Similar to Survivin, we find that the BORIs bind to phosphorylated histone H3, relevant for correct CPC association with chromatin. However, this interaction is not mediated by a BIR domain as in previously recognized Survivin orthologs but by an FHA domain, a widely conserved phosphate-binding module. We find that the unifying criterion of Survivin-type proteins is a helix that facilitates complex formation with the other two scaffold components and that the addition of a phosphate-binding domain, necessary for concentration at the inner centromere, evolved in parallel in different eukaryotic groups. Using sensitive similarity searches, we find conservation of this helical domain between animals and plants and identify the missing CPC component in most eukaryotic supergroups. Interestingly, we also detect Survivin orthologs without a defined phosphate-binding domain, likely reflecting the situation in the last eukaryotic common ancestor.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Mitose , Fosfatos/metabolismo , Survivina/genética , Survivina/metabolismo
5.
PLoS Biol ; 19(3): e3001081, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705380

RESUMO

The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.


Assuntos
Apicomplexa/metabolismo , Plasmodium/metabolismo , Evolução Biológica , Citoesqueleto/metabolismo , Evolução Molecular , Malária/parasitologia , Mosquitos Vetores/metabolismo , Plasmodium/patogenicidade , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade
6.
J Cell Sci ; 134(5)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32501284

RESUMO

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.


Assuntos
Parasitos , Plasmodium , Animais , Divisão Celular , Segregação de Cromossomos/genética , Cinetocoros , Microtúbulos , Mitose/genética , Plasmodium/genética , Fuso Acromático/genética
7.
Proc Natl Acad Sci U S A ; 116(26): 12873-12882, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31127038

RESUMO

The emergence of eukaryotes from ancient prokaryotic lineages embodied a remarkable increase in cellular complexity. While prokaryotes operate simple systems to connect DNA to the segregation machinery during cell division, eukaryotes use a highly complex protein assembly known as the kinetochore. Although conceptually similar, prokaryotic segregation systems and the eukaryotic kinetochore are not homologous. Here we investigate the origins of the kinetochore before the last eukaryotic common ancestor (LECA) using phylogenetic trees, sensitive profile-versus-profile homology detection, and structural comparisons of its protein components. We show that LECA's kinetochore proteins share deep evolutionary histories with proteins involved in a few prokaryotic systems and a multitude of eukaryotic processes, including ubiquitination, transcription, and flagellar and vesicular transport systems. We find that gene duplications played a major role in shaping the kinetochore; more than half of LECA's kinetochore proteins have other kinetochore proteins as closest homologs. Some of these have no detectable homology to any other eukaryotic protein, suggesting that they arose as kinetochore-specific folds before LECA. We propose that the primordial kinetochore evolved from proteins involved in various (pre)eukaryotic systems as well as evolutionarily novel folds, after which a subset duplicated to give rise to the complex kinetochore of LECA.


Assuntos
Evolução Molecular , Cinetocoros/química , Filogenia , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , Duplicação Gênica , Cinetocoros/classificação , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/genética , Homologia de Sequência de Aminoácidos
8.
Bioessays ; 41(5): e1900006, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31026339

RESUMO

Comparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches. The authors here discuss this challenge from a practical (what are the observations?) and conceptual (how do these indicate a specific evolutionary scenario?) viewpoint, with the aim to guide investigators who want to analyze the evolution of their protein(s) of interest. By sharing how the authors draft, test, and update such a scenario and how it directs their investigations, the authors hope to illuminate how to execute molecular evolution studies and how to interpret them. Also see the video abstract here https://youtu.be/VCt3l2pbdbQ.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Proteínas/genética , Proteínas de Caenorhabditis elegans/genética , Bases de Dados de Proteínas , Células Eucarióticas , Genômica/métodos , Humanos , Filogenia , Domínios Proteicos , Proteínas/química
9.
Chromosoma ; 128(3): 331-354, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31037469

RESUMO

The monopolin complex is a multifunctional molecular crosslinker, which in S. pombe binds and organises mitotic kinetochores to prevent aberrant kinetochore-microtubule interactions. In the budding yeast S. cerevisiae, whose kinetochores bind a single microtubule, the monopolin complex crosslinks and mono-orients sister kinetochores in meiosis I, enabling the biorientation and segregation of homologs. Here, we show that both the monopolin complex subunit Csm1 and its binding site on the kinetochore protein Dsn1 are broadly distributed throughout eukaryotes, suggesting a conserved role in kinetochore organisation and function. We find that budding yeast Csm1 binds two conserved motifs in Dsn1, one (termed Box 1) representing the ancestral, widely conserved monopolin binding motif and a second (termed Box 2-3) with a likely role in enforcing specificity of sister kinetochore crosslinking. We find that Box 1 and Box 2-3 bind the same conserved hydrophobic cavity on Csm1, suggesting competition or handoff between these motifs. Using structure-based mutants, we also find that both Box 1 and Box 2-3 are critical for monopolin function in meiosis. We identify two conserved serine residues in Box 2-3 that are phosphorylated in meiosis and whose mutation to aspartate stabilises Csm1-Dsn1 binding, suggesting that regulated phosphorylation of these residues may play a role in sister kinetochore crosslinking specificity. Overall, our results reveal the monopolin complex as a broadly conserved kinetochore organiser in eukaryotes, which budding yeast have co-opted to mediate sister kinetochore crosslinking through the addition of a second, regulatable monopolin binding interface.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Eucariotos/genética , Eucariotos/metabolismo , Evolução Molecular , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
EMBO Rep ; 18(9): 1559-1571, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28642229

RESUMO

During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule-mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current-day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co-evolved with one another, albeit in different manners. These co-evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.


Assuntos
Proteínas de Ciclo Celular/genética , Eucariotos/fisiologia , Evolução Molecular , Genômica/métodos , Cinetocoros/fisiologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Segregação de Cromossomos , Eucariotos/genética , Duplicação Gênica , Cinetocoros/química , Microtúbulos
11.
J Cell Sci ; 128(16): 2975-82, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26148513

RESUMO

Mitotic chromosome segregation is initiated by the anaphase promoting complex/cyclosome (APC/C) and its co-activator CDC20 (forming APC/C(CDC20)). APC/C(CDC20) is inhibited by the spindle assembly checkpoint (SAC) when chromosomes have not attached to spindle microtubules. Unattached kinetochores catalyze the formation of a diffusible APC/C(CDC20) inhibitor that comprises BUBR1 (also known as BUB1B), BUB3, MAD2 (also known as MAD2L1) and a second molecule of CDC20. Recruitment of these proteins to the kinetochore, as well as SAC activation, rely on the mitotic kinase BUB1, but the molecular mechanism by which BUB1 accomplishes this in human cells is unknown. We show that kinetochore recruitment of BUBR1 and BUB3 by BUB1 is dispensable for SAC activation. Unlike its yeast and nematode orthologs, human BUB1 does not associate stably with the MAD2 activator MAD1 (also known as MAD1L1) and, although required for accelerating the loading of MAD1 onto kinetochores, BUB1 is dispensable for the maintenance of steady-state levels of MAD1 there. Instead, we identify a 50-amino-acid segment that harbors the recently reported ABBA motif close to a KEN box as being crucial for the role of BUB1 in SAC signaling. The presence of this segment correlates with SAC activity and efficient binding of CDC20 but not of MAD1 to kinetochores.


Assuntos
Proteínas Cdc20/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/genética , Humanos , Cinetocoros/metabolismo , Mitose/genética , Proteínas Nucleares/genética , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/genética
12.
Open Biol ; 14(6): 240025, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862021

RESUMO

Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.


Assuntos
Cinetocoros , Proteínas de Protozoários , Cinetocoros/metabolismo , Cinetocoros/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Modelos Moleculares , Sequência de Aminoácidos , Filogenia , Ligação Proteica , Cristalografia por Raios X , Segregação de Cromossomos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética
13.
Trends Parasitol ; 39(10): 812-821, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541799

RESUMO

Meiosis is sexual cell division, a process in eukaryotes whereby haploid gametes are produced. Compared to canonical model eukaryotes, meiosis in apicomplexan parasites appears to diverge from the process with respect to the molecular mechanisms involved; the biology of Plasmodium meiosis, and its regulation by means of post-translational modification, are largely unexplored. Here, we discuss the impact of technological advances in cell biology, evolutionary bioinformatics, and genome-wide functional studies on our understanding of meiosis in the Apicomplexa. These parasites, including Plasmodium falciparum, Toxoplasma gondii, and Eimeria spp., have significant socioeconomic impact on human and animal health. Understanding this key stage during the parasite's life cycle may well reveal attractive targets for therapeutic intervention.


Assuntos
Plasmodium , Toxoplasma , Animais , Humanos , Eucariotos , Plasmodium falciparum/genética , Meiose
14.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790109

RESUMO

Kinetochores connect chromosomes to spindle microtubules to ensure their correct segregation during cell division. Kinetochores of human and yeasts are largely homologous, their ability to track depolymerizing microtubules, however, is carried out by the nonhomologous complexes Ska1-C and Dam1-C, respectively. We previously reported the unique anti-correlating phylogenetic profiles of Dam1-C and Ska-C found among a wide variety of eukaryotes. Based on these profiles and the limited presence of Dam1-C, we speculated that horizontal gene transfer could have played a role in the evolutionary history of Dam1-C. Here, we present an expanded analysis of Dam1-C evolution, using additional genome as well as transcriptome sequences and recently published 3D structures. This analysis revealed a wider and more complete presence of Dam1-C in Cryptista, Rhizaria, Ichthyosporea, CRuMs, and Colponemidia. The fungal Dam1-C cryo-EM structure supports earlier hypothesized intracomplex homologies, which enables the reconstruction of rooted and unrooted phylogenies. The rooted tree of concatenated Dam1-C subunits is statistically consistent with the species tree of eukaryotes, suggesting that Dam1-C is ancient, and that the present-day phylogenetic distribution is best explained by multiple, independent losses and no horizontal gene transfer was involved. Furthermore, we investigated the ancient origin of Dam1-C via profile-versus-profile searches. Homology among 8 out of the 10 Dam1-C subunits suggests that the complex largely evolved from a single multimerizing subunit that diversified into a hetero-octameric core via stepwise subunit duplication and subfunctionalization of the subunits before the origin of the last eukaryotic common ancestor.


Assuntos
Cinetocoros , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Associadas aos Microtúbulos/genética , Filogenia , Microtúbulos , Divisão Celular , Proteínas de Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Cromossômicas não Histona/genética
15.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911915

RESUMO

Meiosis is usually described as 4 essential and sequential processes: (1) homolog pairing; (2) synapsis, mediated by the synaptonemal complex; (3) crossing over; and (4) segregation. In this canonical model, the maturation of crossovers into chiasmata plays a vital role in holding homologs together and ensuring their segregation at the first meiotic division. However, Lepidoptera (moths and butterflies) undergo 3 distinct meiotic processes, only one of which is canonical. Lepidoptera males utilize 2 meiotic processes: canonical meiosis that produces nucleated fertile sperm, and a noncanonical meiosis that produces anucleated nonfertile sperm which are nonetheless essential for reproduction. Lepidoptera females, which carry heteromorphic sex chromosomes, undergo a completely achiasmate (lacking crossovers) meiosis, thereby requiring an alternative mechanism to ensure proper homolog segregation. Here, we report that the development of a molecular cell biology toolkit designed to properly analyze features of meiosis, including the synaptonemal complex structure and function, in the silkworm Bombyx mori. In addition to standard homology searches to identify Bombyx orthologs of known synaptonemal complex encoding genes, we developed an ortholog discovery app (Shinyapp) to identify Bombyx orthologs of proteins involved in several meiotic processes. We used this information to clone genes expressed in the testes and then created antibodies against their protein products. We used the antibodies to confirm the localization of these proteins in normal male spermatocytes, as well as using in vitro assays to confirm orthologous interactions. The development of this toolkit will facilitate further study of the unique meiotic processes that characterize meiosis in Lepidoptera.


Assuntos
Bombyx , Borboletas , Animais , Feminino , Masculino , Bombyx/genética , Borboletas/genética , Sêmen , Pareamento Cromossômico , Complexo Sinaptonêmico , Cromossomos Sexuais , Meiose
16.
Nat Commun ; 14(1): 4401, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479728

RESUMO

African trypanosomes are dixenous eukaryotic parasites that impose a significant human and veterinary disease burden on sub-Saharan Africa. Diversity between species and life-cycle stages is concomitant with distinct host and tissue tropisms within this group. Here, the spatial proteomes of two African trypanosome species, Trypanosoma brucei and Trypanosoma congolense, are mapped across two life-stages. The four resulting datasets provide evidence of expression of approximately 5500 proteins per cell-type. Over 2500 proteins per cell-type are classified to specific subcellular compartments, providing four comprehensive spatial proteomes. Comparative analysis reveals key routes of parasitic adaptation to different biological niches and provides insight into the molecular basis for diversity within and between these pathogen species.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Tripanossomíase Africana , Moscas Tsé-Tsé , Humanos , Animais , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Proteoma , Proteômica
17.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778504

RESUMO

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .

18.
Res Sq ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798191

RESUMO

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.

19.
Nat Commun ; 14(1): 5652, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704606

RESUMO

The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.


Assuntos
Divisão do Núcleo Celular , Segregação de Cromossomos , Animais , Plasmodium berghei/genética , Proliferação de Células , Meiose , Aurora Quinases , Eucariotos
20.
Cell Rep ; 42(7): 112668, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37347663

RESUMO

Joint DNA molecules are natural byproducts of DNA replication and repair. Persistent joint molecules give rise to ultrafine DNA bridges (UFBs) in mitosis, compromising sister chromatid separation. The DNA translocase PICH (ERCC6L) has a central role in UFB resolution. A genome-wide loss-of-function screen is performed to identify the genetic context of PICH dependency. In addition to genes involved in DNA condensation, centromere stability, and DNA-damage repair, we identify FIGNL1-interacting regulator of recombination and mitosis (FIRRM), formerly known as C1orf112. We find that FIRRM interacts with and stabilizes the AAA+ ATPase FIGNL1. Inactivation of either FIRRM or FIGNL1 results in UFB formation, prolonged accumulation of RAD51 at nuclear foci, and impaired replication fork dynamics and consequently impairs genome maintenance. Combined, our data suggest that inactivation of FIRRM and FIGNL1 dysregulates RAD51 dynamics at replication forks, resulting in persistent DNA lesions and a dependency on PICH to preserve cell viability.


Assuntos
Mitose , Proteínas , Proteínas/genética , Adenosina Trifosfatases/metabolismo , DNA , Cromátides/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Replicação do DNA/genética , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA