Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Appl Environ Microbiol ; 87(21): e0103721, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34432491

RESUMO

To uncover metal toxicity targets and defense mechanisms of the facultative anaerobe Pantoea sp. strain MT58 (MT58), we used a multiomic strategy combining two global techniques, random bar code transposon site sequencing (RB-TnSeq) and activity-based metabolomics. MT58 is a metal-tolerant Oak Ridge Reservation (ORR) environmental isolate that was enriched in the presence of metals at concentrations measured in contaminated groundwater at an ORR nuclear waste site. The effects of three chemically different metals found at elevated concentrations in the ORR contaminated environment were investigated: the cation Al3+, the oxyanion CrO42-, and the oxycation UO22+. Both global techniques were applied using all three metals under both aerobic and anaerobic conditions to elucidate metal interactions mediated through the activity of metabolites and key genes/proteins. These revealed that Al3+ binds intracellular arginine, CrO42- enters the cell through sulfate transporters and oxidizes intracellular reduced thiols, and membrane-bound lipopolysaccharides protect the cell from UO22+ toxicity. In addition, the Tol outer membrane system contributed to the protection of cellular integrity from the toxic effects of all three metals. Likewise, we found evidence of regulation of lipid content in membranes under metal stress. Individually, RB-TnSeq and metabolomics are powerful tools to explore the impact various stresses have on biological systems. Here, we show that together they can be used synergistically to identify the molecular actors and mechanisms of these pertubations to an organism, furthering our understanding of how living systems interact with their environment. IMPORTANCE Studying microbial interactions with their environment can lead to a deeper understanding of biological molecular mechanisms. In this study, two global techniques, RB-TnSeq and activity metabolomics, were successfully used to probe the interactions between a metal-resistant microorganism, Pantoea sp. strain MT58, and metals contaminating a site where the organism can be located. A number of novel metal-microbe interactions were uncovered, including Al3+ toxicity targeting arginine synthesis, which could lead to a deeper understanding of the impact Al3+ contamination has on microbial communities as well as its impact on higher-level organisms, including plants for whom Al3+ contamination is an issue. Using multiomic approaches like the one described here is a way to further our understanding of microbial interactions and their impacts on the environment overall.


Assuntos
Elementos de DNA Transponíveis , Metabolômica , Metais/toxicidade , Pantoea/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Pantoea/metabolismo
2.
Mol Cell Proteomics ; 15(5): 1539-55, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26873250

RESUMO

Numerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.


Assuntos
Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Desulfovibrio vulgaris/metabolismo , Escherichia coli/metabolismo , Cromatografia de Afinidade , Bases de Dados de Proteínas , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Técnicas do Sistema de Duplo-Híbrido
3.
Environ Sci Technol ; 49(2): 924-31, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25534748

RESUMO

Sulfate-reducing microbes, such as Desulfovibrio vulgaris Hildenborough, cause "souring" of petroleum reservoirs through produced sulfide and precipitate heavy metals, either as sulfides or by alteration of the metal reduction state. Thus, inhibitors of these microbes, including nitrate and nitrite ions, are studied in order to limit their impact. Nitrite is a potent inhibitor of sulfate reducers, and it has been suggested that nitrate does not inhibit these microbes directly but by reduction to nitrite, which serves as the ultimate inhibitor. Here we provide evidence that nitrate inhibition of D. vulgaris can be independent of nitrite production. We also show that D. vulgaris can use nitrite as a nitrogen source or terminal electron acceptor for growth. Moreover, we report that use of nitrite as a terminal electron acceptor requires nitrite reductase (nrfA) as a D. vulgaris nrfA mutant cannot respire nitrite but remains capable of utilizing nitrite as a nitrogen source. These results illuminate previously uncharacterized metabolic abilities of D. vulgaris that may allow niche expansion in low-sulfate environments. Understanding these abilities may lead to better control of sulfate-reducing bacteria in industrial settings and more accurate prediction of their interactions in the environment.


Assuntos
Desulfovibrio vulgaris/efeitos dos fármacos , Nitratos/análise , Nitritos/análise , Catálise , Elétrons , Monitoramento Ambiental/métodos , Lactatos/química , Nitrito Redutases/metabolismo , Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Oxirredução , Oxigênio/química , Petróleo , Sulfatos/metabolismo , Sulfetos/metabolismo
4.
Microbiol Resour Announc ; 12(6): e0002523, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37154712

RESUMO

The draft genome sequence of the soil bacterium Pedococcus sp. strain 5OH_020, isolated on a natural cobalamin analog, comprises 4.4 Mbp, with 4,108 protein-coding genes. Its genome encodes cobalamin-dependent enzymes, including methionine synthase and class II ribonucleotide reductase. Taxonomic analysis suggests that it is a novel species within the genus Pedococcus.

5.
Front Microbiol ; 14: 1095191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065130

RESUMO

Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.

6.
Cell Rep ; 34(9): 108789, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657378

RESUMO

Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.


Assuntos
Bacteroides thetaiotaomicron/genética , Dieta , Metabolismo Energético/genética , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Adaptação Fisiológica , Compostos de Amônio/metabolismo , Animais , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Ácidos e Sais Biliares/metabolismo , Bases de Dados Genéticas , Dissacarídeos/metabolismo , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Mutação , Especificidade por Substrato , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
7.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737356

RESUMO

The dissimilatory sulfate-reducing deltaproteobacterium Desulfovibrio vulgaris Hildenborough (ATCC 29579) was chosen by the research collaboration ENIGMA to explore tools and protocols for bringing this anaerobe to model status. Here, we describe a collection of genetic constructs generated by ENIGMA that are available to the research community.

8.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042504

RESUMO

Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here we show that two supposedly identical wild-type cultures of the SRB Desulfovibrio vulgaris Hildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficient to eliminate biofilm formation in D. vulgaris Hildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered.IMPORTANCE The growth of bacteria attached to a surface (i.e., biofilm), specifically biofilms of sulfate-reducing bacteria, has a profound impact on the economy of developed nations due to steel and concrete corrosion in industrial pipelines and processing facilities. Furthermore, the presence of sulfate-reducing bacteria in oil wells causes oil souring from sulfide production, resulting in product loss, a health hazard to workers, and ultimately abandonment of wells. Identification of the required genes is a critical step for determining the mechanism of biofilm formation by sulfate reducers. Here, the transporter by which putative biofilm structural proteins are exported from sulfate-reducing Desulfovibrio vulgaris Hildenborough cells was discovered, and a single nucleotide change within the gene coding for this transporter was found to be sufficient to completely stop formation of biofilm.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Biofilmes/crescimento & desenvolvimento , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/fisiologia , Evolução Molecular Direcionada , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Genoma Bacteriano , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA