Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34848542

RESUMO

Normally, dendritic size is established prior to adolescence and then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in Kalrn, KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wild-type KAL. In mice containing this missense mutation at the endogenous locus, there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Spine density per unit length of dendrite is unaffected. Early adult mice with these structural deficits exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.


Assuntos
Córtex Cerebral/citologia , Dendritos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Sistemas CRISPR-Cas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Genótipo , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Maturidade Sexual
2.
Epilepsy Res ; 208: 107470, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447533

RESUMO

Structural epilepsy is a chronic neurologic condition that may be caused by in utero malformations of cortical development (MCD) or post-natal brain injuries resulting in encephalomalacia. We hypothesized that the timing of epileptogenic insult would lead to distinct electrographic seizure patterns. Specifically, we predicted that later life insults would lead to longer duration seizures with higher proportion of focal: focal to bilateral tonic-clonic (FBTC) seizures and low rates of bihemispheric onset seizures, as compared to early life insults. We performed a retrospective chart review of 70 adult patients - 33 with epilepsy secondary to brain injury (9 with injury occurring before 16 years and 24 with injury occurring at or after 16 years) with resultant encephalomalacia on MR imaging and 37 with epilepsy secondary to MCD - admitted to the University of Pittsburgh Epilepsy Monitoring Unit for presurgical evaluation. There were no significant differences in duration of epilepsy or number of trialed seizure medications between the groups. We examined scalp EEG data for all patients, as well as intracranial EEG data in a subset. We analyzed seizure duration, seizure frequency, and seizure type (focal, FBTC, and bihemispheric onset) in three cohorts: MCD patients, patients with brain injury occurring in early life (<16 years old), and patients with brain injury occurring in later life (≥16 years old). Patients with later life brain injury had significantly longer and less frequent seizures as compared to MCD cohorts. There were no differences between MCD and early life brain injury cohorts. Seizure duration findings were corroborated in a subset of patients who additionally underwent intracranial EEG monitoring. Additionally, later life brain injury patients had significantly different seizure types as compared to MCD cohorts, with high rates of FBTC and low rates of bihemispheric onset. Again, there was no significant differences in seizure type between early life brain injury and MCD cohorts. These novel findings indicate the relevance of timing of epileptogenic insult on the electrophysiological characteristics of structural epilepsies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA