Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080418

RESUMO

Melatonin (MEL), an indolamine with diverse functions in the brain, has been shown to produce antidepressant-like effects, presumably through stimulating neurogenesis. We recently showed that the combination of MEL with ketamine (KET), an NMDA receptor antagonist, has robust antidepressant-like effects in mice, at doses that, by themselves, are non-effective and have no adverse effects. Here, we show that the KET/MEL combination increases neurogenesis in a clone derived from human olfactory neuronal precursors, a translational pre-clinical model for effects in the human CNS. Neurogenesis was assessed by the formation of cell clusters > 50 µm in diameter, positively stained for nestin, doublecortin, BrdU and Ki67, markers of progenitor cells, neurogenesis, and proliferation. FGF, EGF and BDNF growth factors increased the number of cell clusters in cultured, cloned ONPs. Similarly, KET or MEL increased the number of clusters in a dose-dependent manner. The KET/MEL combination further increased the formation of clusters, with a maximal effect obtained after a triple administration schedule. Our results show that the combination of KET/MEL, at subeffective doses that do not produce adverse effects, stimulate neurogenesis in human neuronal precursors. Moreover, the mechanism by which the combination elicits neurogenesis is meditated by melatonin receptors, CaM Kinase II and CaM antagonism. This could have clinical advantages for the fast treatment of depression.


Assuntos
Ketamina , Melatonina , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Hipocampo/metabolismo , Humanos , Ketamina/metabolismo , Ketamina/farmacologia , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Neurogênese , Neurônios
2.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502152

RESUMO

Major depressive disorder is a disabling disease with the number of affected individuals increasing each year. Current antidepressant treatments take between three to six weeks to be effective with forty percent of patients being resistant to treatment, making it necessary to search for new antidepressant treatments. Ketamine, a phencyclidine hydrochloride derivative, given intravenously, induces a rapid antidepressant effect in humans. In mice, it causes increased neurogenesis and antidepressant-like effects. However, it also produces psychomimetic effects in humans and in rodents increases the locomotor activity. In contrast, melatonin, a hormone secreted by the pineal gland and synthesized in extrapineal sites, increases new neuron formation and causes antidepressant-like effects in adult rodents with no collateral effects. Here, we assessed the effects of a non-effective dose of ketamine in combination with melatonin (KET/MEL), both on neurogenesis as well as on the antidepressant-like effect in mice. Our results showed that KET/MEL combination increased neurogenesis and produced antidepressant-like effects without altering locomotor activity after both single and triple administration protocols. Our data strongly suggest that KET/MEL combination could be used to simultaneously promote neurogenesis, reverting neuronal atrophy and inducing antidepressant-like effects.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Ketamina/uso terapêutico , Melatonina/uso terapêutico , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Ketamina/administração & dosagem , Ketamina/farmacologia , Masculino , Melatonina/administração & dosagem , Melatonina/farmacologia , Camundongos , Neurogênese/efeitos dos fármacos
3.
J Pineal Res ; 63(3)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28500770

RESUMO

Dim light exposure of the mother during pregnancy has been proposed as one of the environmental factors that affect the fetal brain development in schizophrenia. Melatonin circulating levels are regulated by the environmental light/dark cycle. This hormone stimulates neuronal differentiation in the adult brain. However, little is known about its role in the fetal human brain development. Olfactory neuronal precursors (ONPs) are useful for studying the physiopathology of neuropsychiatric diseases because they mimic all the stages of neurodevelopment in culture. Here, we first characterized whether melatonin stimulates neuronal differentiation in cloned ONPs obtained from a healthy control subject (HCS). Then, melatonin effects were evaluated in primary cultures of ONPs derived from a patient diagnosed with schizophrenia (SZ) and an age- and gender-matched HCS. Axonal formation was evidenced morphologically by tau immunostaining and by GSK3ß phosphorylated state. Potassium-evoked secretion was assessed as a functional feature of differentiated neurons. As well, we report the expression of MT1/2 receptors in human ONPs for the first time. Melatonin stimulated axonal formation and ramification in cloned ONPs through a receptor-mediated mechanism and enhanced the amount and velocity of axonal and somatic secretion. SZ ONPs displayed reduced axogenesis associated with lower levels of pGSK3ß and less expression of melatonergic receptors regarding the HCS ONPs. Melatonin counteracted this reduction in SZ cells. Altogether, our results show that melatonin signaling is crucial for functional differentiation of human ONPs, strongly suggesting that a deficit of this indoleamine may lead to an impaired neurodevelopment which has been associated with the etiology of schizophrenia.


Assuntos
Melatonina/fisiologia , Células Neuroepiteliais/fisiologia , Crescimento Neuronal , Esquizofrenia/etiologia , Axônios/metabolismo , Estudos de Casos e Controles , Polaridade Celular , Células Cultivadas , Receptores de Melatonina/metabolismo , Sinapses/fisiologia
4.
Int J Mol Sci ; 18(7)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703738

RESUMO

The alterations that underlie the pathophysiology of schizophrenia (SCZ) include the dysregulation of structural and functional properties of neurons. Among these, the secretion of neurotransmitters and hormones, which plays a key role for neuronal communication and development, is altered. Neuronal precursors from the human olfactory epithelium have been recently characterized as a reliable model for studying the etiopathogenesis of neuropsychiatric diseases. Our previous work has shown that melatonin enhances the development of morphological and functional features of cloned olfactory neuronal precursors (ONPs) from a healthy subject. In this work we found that primary cultures of ONPs obtained from a schizophrenic patient display an increased potassium-evoked secretion, when compared with ONPs from an age- and gender-matched healthy control subject (HCS). Secretion was evaluated by FM1-43 fluorescence cumulative changes in response to depolarization. Interestingly, a 12 h-melatonin treatment modulated the abnormally increased secretion in SCZ ONPs and brought it to levels similar to those found in the HCS ONPs. Our results suggest that the actin cytoskeleton might be a target for melatonin effects, since it induces the thickening of actin microfilament bundles. Further research will address the mechanisms by which melatonin modulates neurochemical secretion from ONPs.


Assuntos
Melatonina/farmacologia , Células-Tronco Neurais/metabolismo , Mucosa Olfatória/patologia , Esquizofrenia/patologia , Citoesqueleto de Actina/metabolismo , Adulto , Cálcio/farmacologia , Humanos , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Projetos Piloto , Potássio/farmacologia , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Sinapses/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
5.
MethodsX ; 8: 101374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430270

RESUMO

Two types of secretory vesicles co-exist at some presynaptic terminals. Clear synaptic vesicles (CSV) release their contents at the synaptic active zone, upon single impulses, while dense-core vesicles (DCV) usually release their contents in the periphery of the terminal upon repetitive stimulation. Part of the transmitter released by DCV diffuses to produce paracrine effects, and part of it reaches the postsynaptic terminal, adding its effect to that of synaptic release. This article presents an analytical method to separate the contribution of CSV and DCV to the postsynaptic responses, based on the kinetics of postsynaptic currents (PSCs). Since stimulation with single presynaptic impulses usually triggers release only from CSV, the kinetics of the resulting PSC can be used as a template to model the postsynaptic response to release from CSV during stimulation trains, accounting for the variations in the amplitude of PSCs due to short-term synaptic plasticity. Subtraction of this model simulation to the total recorded PSC renders the response to DCV peri­synaptic release, which has slower kinetics. The method can be further simplified by measuring only the amplitudes of the PSC peaks for synaptic release and the integral of the current for peri­synaptic release.•The postsynaptic current in response to presynaptic release from clear synaptic vesicles is modeled using the kinetics of the PSC in response to single impulses.•The model synaptic response is subtracted from the total recorded PSC to obtain the response to peri­synaptic release from dense-core vesicles.

6.
Neuroscience ; 458: 120-132, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359652

RESUMO

Auto-regulation mechanisms in serotonergic neurons regulate their electrical activity and secretion. Since these neurons release serotonin from different structural compartments - including presynaptic terminals, soma, axons and dendrites - through different mechanisms, autoregulation mechanisms are also likely to be different at each compartment. Here we show that a chloride-mediated auto-inhibitory mechanism is exclusively localized at presynaptic terminals, but not at extrasynaptic release sites, in serotonergic Retzius neurons of the leech. An auto-inhibition response was observed immediately after intracellular stimulation with an electrode placed in the soma, in neurons that were isolated and cultured retaining an axonal stump, where presynaptic terminals are formed near the soma, but not in somata isolated without axon, where no synaptic terminals are formed, nor in neurons in the nerve ganglion, where terminals are electrotonically distant from the soma. Furthermore, no auto-inhibition response was detected in either condition during the longer time course of somatic secretion. This shows that the auto-inhibition effects are unique to nerve terminals. We further determined that serotonin released from peri-synaptic dense-core vesicles contributes to auto-inhibition in the terminals, since blockade of L-type calcium channels, which are required to stimulate extrasynaptic but not synaptic release, decreased the amplitude of the auto-inhibition response. Our results show that the auto-regulation mechanism at presynaptic terminals is unique and different from that described in the soma of these neurons, further highlighting the differences in the mechanisms regulating serotonin release from different neuronal compartments, which expand the possibilities of a single neuron to perform multiple functions in the nervous system.


Assuntos
Terminações Pré-Sinápticas , Neurônios Serotoninérgicos , Animais , Axônios , Terminações Nervosas , Serotonina
7.
Stem Cells Int ; 2019: 2728786, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065271

RESUMO

Extracellular ATP and trophic factors released by exocytosis modulate in vivo proliferation, migration, and differentiation in multipotent stem cells (MpSC); however, the purinoceptors mediating this signaling remain uncharacterized in stem cells derived from the human olfactory epithelium (hOE). Our aim was to determine the purinergic pathway in isolated human olfactory neuronal precursor cells (hONPC) that exhibit MpSC features. Cloning by limiting dilution from a hOE heterogeneous primary culture was performed to obtain a culture predominantly constituted by hONPC. Effectiveness of cloning to isolate MpSC-like precursors was corroborated through immunodetection of specific protein markers and by functional criteria such as self-renewal, proliferation capability, and excitability of differentiated progeny. P2 receptor expression in hONPC was determined by Western blot, and the role of these purinoceptors in the ATP-induced exocytosis and changes in cytosolic Ca2+ ([Ca2+]i) were evaluated using the fluorescent indicators FM1-43 and Fura-2 AM, respectively. The clonal culture was enriched with SOX2 and OCT3/4 transcription factors; additionally, the proportion of nestin-immunopositive cells, the proliferation capability, and functionality of differentiated progeny remained unaltered through the long-term clonal culture. hONPC expressed P2X receptor subtypes 1, 3-5, and 7, as well as P2Y2, 4, 6, and 11; ATP induced both exocytosis and a transient [Ca2+]i increase predominantly by activation of metabotropic P2Y receptors. Results demonstrated for the first time that ex vivo-expressed functional P2 receptors in MpSC-like hONPC regulate exocytosis and Ca2+ signaling. This purinergic-triggered release of biochemical messengers to the extracellular milieu might be involved in the paracrine signaling among hOE cells.

8.
Br J Pharmacol ; 175(16): 3200-3208, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29512136

RESUMO

Mood disorders are a spectrum of neuropsychiatric disorders characterized by changes in the emotional state. In particular, major depressive disorder is expected to have a worldwide prevalence of 20% in 2020, representing a huge socio-economic burden. Currently used antidepressant drugs have poor efficacy with only 30% of the patients in remission after the first line of treatment. Importantly, mood disorder patients present uncoupling of circadian rhythms. In this regard, melatonin (5-methoxy-N-acetyltryptamine), an indolamine synthesized by the pineal gland during the night, contributes to synchronization of body rhythms with the environmental light/dark cycle. In this review, we describe evidence supporting antidepressant-like actions of melatonin related to the circadian modulation of neuroplastic changes in the hippocampus. We also present evidence for the role of melatonin receptors and their signalling pathways underlying modulatory effects in neuroplasticity. Finally, we briefly discuss the detrimental consequences of circadian disruption on neuroplasticity and mood disorders, due to the modern human lifestyle. Together, data suggest that melatonin's stimulation of neurogenesis and neuronal differentiation is beneficial to patients with mood disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.


Assuntos
Ritmo Circadiano/fisiologia , Depressão/tratamento farmacológico , Melatonina/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Depressão/metabolismo , Depressão/fisiopatologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Melatonina/uso terapêutico
9.
Front Cell Neurosci ; 8: 169, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018697

RESUMO

The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca(2+) entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca(2+) transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca(2+) entry through L-type channels activated Ca(2+)-induced Ca(2+) release. A resulting fast Ca(2+) transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca(2+) transient also triggered the transport of distant clusters of vesicles toward the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca(2+) increase in the submembrane shell. This localized Ca(2+) increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca(2+) and this Ca(2+) evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine neurotransmission.

10.
Front Physiol ; 3: 319, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969726

RESUMO

We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities. Extrasynaptic exocytosis may be the major source of signaling molecules producing volume transmission and by doing so may be part of a long duration signaling mode in the nervous system.

11.
Front Physiol ; 3: 175, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685436

RESUMO

We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear region.

12.
Salud ment ; 37(2): 103-110, mar.-abr. 2014. ilus
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-721339

RESUMO

En este trabajo se estudió la participación que tiene la liberación de calcio del retículo endoplásmico en la liberación de serotonina en terminales sinápticas. Los experimentos se llevaron a cabo en sinapsis formadas en cultivo entre neuronas serotonérgicas de Retzius y neuronas mecanosensoriales sensibles a presión, aisladas del Sistema Nervioso Central de la sanguijuela. En esta preparación la estimulación con pares de impulsos produjo facilitación sináptica. La estabilización de los receptores de rianodina en un estado de sub-conductancia por la incubación con rianodina 100 μM produjo un alargamiento del potencial sináptico en respuesta a impulsos presinápticos, sugiriendo que el calcio liberado por estos canales puede alcanzar las vesículas y promover la secreción. En contraste, el vaciamiento de los depósitos intracelulares de calcio con tapsigargina 500 nM produjo una disminución gradual de la facilitación sináptica ante impulsos presinápticos pareados y abolió la liberación extrasináptica en el axón neuronal en respuesta a trenes de impulsos. Todo esto ocurrió sin cambios en las propiedades de la membrana postsináptica, lo cual sugiere que la liberación de calcio intracelular participa en un mecanismo de retroalimentación positiva que promueve la liberación presináptica y perisináptica en las neuronas serotonérgicas.


This work analyses the role of intracellular calcium pools in serotonin release from nerve terminals. Experiments were carried out in synapses formed in culture between serotonergic Retzius neurones and pressure mechanosensory neurons, isolated from the Central Nervous System of the leech. In this configuration, serotonin is released from clear vesicles at synapses or from extrasynaptic dense core vesicles. Locking ryanodine receptors in a subconductance state by incubation with 100 μM ryanodine caused an elongation of the synaptic potential in response to a presynaptic action potential or to trains of them, suggesting that calcium released from the endoplasmic reticulum through these channels reaches the synaptic vesicles and may promote their fusion with the plasma membrane. By contrast, depletion of intracellular calcium pools by incubation with 500 nM thapsigargin gradually decreased paired-pulse synaptic facilitation and abolished extrasynaptic axonal serotonin release in response to trains of impulses. All this occurred without changes in the properties of the postsynaptic membrane, indicating that intracellular calcium release participates in a feedback mechanism that enhances presynaptic and perisynaptic release in serotonergic neurons.

13.
J Neurophysiol ; 102(2): 1075-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19535486

RESUMO

We studied autoinhibition produced immediately after synaptic serotonin (5-HT) release in identified leech Retzius neurons, cultured singly or forming synapses onto pressure-sensitive neurons. Cultured Retzius neurons are isopotential, thus allowing accurate recordings of synaptic events using intracellular microelectrodes. The effects of autoinhibition on distant neuropilar presynaptic endings were predicted from model simulations. Following action potentials (APs), cultured neurons produced a slow hyperpolarization with a rise time of 85.4 +/- 5.2 ms and a half-decay time of 252 +/- 17.4 ms. These inhibitory postpotentials were reproduced by the iontophoretic application of 5-HT and became depolarizing after inverting the transmembranal chloride gradient by using microelectrodes filled with potassium chloride. The inhibitory postpotentials were reversibly abolished in the absence of extracellular calcium and absent in reserpine-treated neurons, suggesting an autoinhibition due to 5-HT acting on autoreceptors coupled to chloride channels. The autoinhibitory responses increased the membrane conductance and decreased subsequent excitability. Increasing 5-HT release by stimulating with trains of ten pulses at 10 or 30 Hz produced 23 +/- 6 and 47 +/- 2% of AP failures, respectively. These failures were reversibly abolished by the serotonergic antagonist methysergide (140 muM). Moreover, reserpine-treated neurons had only 5 +/- 4% of failures during trains at 10 Hz. This percentage was increased to 35 +/- 4% by iontophoretic application of 5-HT. Increases in AP failures correlated with smaller postsynaptic currents. Model simulations predicted that the autoinhibitory chloride conductance reduces the amplitude of APs arriving at neuropilar presynaptic endings. Altogether, our results suggest that 5-HT autoinhibits its subsequent release by decreasing the excitability of presynaptic endings within the same neuron.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Serotonina/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Estimulação Elétrica , Espaço Extracelular/metabolismo , Sanguessugas , Potenciais da Membrana/efeitos dos fármacos , Metisergida/farmacologia , Modelos Neurológicos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Cloreto de Potássio/metabolismo , Reserpina/farmacologia , Antagonistas da Serotonina/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
14.
Salud ment ; 35(5): 435-443, sep.-oct. 2012. ilus
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-675542

RESUMO

Serotonin is fundamental for the modulation of social behavior, emotions and a wide variety of physiological functions. The functions of serotonergic systems have been highly conserved along the evolutionary scale and in general small numbers of neurons innervate virtually all the nervous system, and exert multiple effects depending on the site of release. Synaptic pools produce fast and local effects, while extrasynaptic pools in the soma, dendrites, axons and the periphery of synapses produce diffuse effects, characteristic of mood modulation. Serotonin release from synaptic terminals is produced by exocytosis of small clear vesicles and is activated by single or low-frequency impulses, while increases in the stimulation frequency produce synaptic facilitation and depression. In contrast, release from the soma is produced by exocytosis of dense-cored vesicles and requires stimulation at high frequencies, the activation of L-type calcium channels and calcium-induced calcium release from intracellular stores. Serotonin released from the presynaptic terminals immediately activates auto-receptors in the same terminals, locally decreasing the subsequent excitability, firing frequency and release. Differential regulation of serotonin release in different cell compartments allows the same neuron to produce different types of effects depending on the firing rate.


La serotonina es fundamental para la modulación de la conducta social, las emociones y una gran cantidad de funciones fisiológicas. La función de los sistemas serotonérgicos se ha conservado a lo largo de la escala evolutiva y, en general, números pequeños de neuronas inervan prácticamente todo el Sistema Nervioso. Estas neuronas son capaces de ejercer múltiples efectos, dependiendo de si liberan serotonina de pozas sinápticas, que ejercen efectos rápidos y locales o de pozas extrasinápticas en la periferia de las sinapsis, el axon, el cuerpo celular o las dendritas, con lo que se producen efectos lentos y difusos, característicos de los estados de ánimo. La liberación de serotonina en las terminales sinápticas es producida por la exocitosis de vesículas claras pequeñas y se activa con impulsos sencillos o a baja frecuencia. La estimulación con trenes de impulsos a frecuencias crecientes produce facilitación y depresión sináptica. En contraste, la liberación a partir del soma es producida por la exocitosis de vesículas de núcleo denso y requiere de la estimulación a frecuencias altas, la activación de canales de calcio tipo L y de la liberación de calcio de los depositos intracelulares. La serotonina liberada por las terminales sinápticas activa de manera inmediata autorreceptores en las propias terminales que la liberaron, disminuyendo la excitabilidad subsiguiente y, por lo tanto, la frecuencia de disparo y la liberación de manera localizada. La regulación diferencial de la liberación en cada compartimiento celular permite que la misma neurona produzca diferentes tipos de efectos dependiendo de la frecuencia de disparo.

15.
Cell Mol Neurobiol ; 25(2): 297-312, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16047543

RESUMO

Serotonin is a major modulator of behavior in vertebrates and invertebrates and deficiencies in the serotonergic system account for several behavioral disorders in humans. The small numbers of serotonergic central neurons of vertebrates and invertebrates produce their effects by use of two modes of secretion: from synaptic terminals, acting locally in "hard wired" circuits, and from extrasynaptic axonal and somatodendritic release sites in the absence of postsynaptic targets, producing paracrine effects. In this paper, we review the evidence of synaptic and extrasynaptic release of serotonin and the mechanisms underlying each secretion mode by combining evidence from vertebrates and invertebrates. Particular emphasis is given to somatic secretion of serotonin by central neurons. Most of the mechanisms of serotonin release have been elucidated in cultured synapses made by Retzius neurons from the central nervous system of the leech. Serotonin release from synaptic terminals occurs from clear and dense core vesicles at active zones upon depolarization. In general, synaptic serotonin release is similar to release of acetylcholine in the neuromuscular junction. The soma of Retzius neurons releases serotonin from clusters of dense core vesicles in the absence of active zones. This type of secretion is dependent of the stimulation frequency, on L-type calcium channel activation and on calcium-induced calcium release. The characteristics of somatic secretion of serotonin in Retzius neurons are similar to those of somatic secretion of dopamine and peptides by other neuron types. In general, somatic secretion by neurons is different from transmitter release from clear vesicles at synapses and similar to secretion by excitable endocrine cells.


Assuntos
Exocitose/fisiologia , Serotonina/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Humanos , Neurônios/metabolismo
16.
J Physiol ; 547(Pt 2): 405-16, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12562971

RESUMO

We studied somatic exocytosis of serotonin and its mediation by L-type calcium (Ca2+) channels in cultured Retzius neurones of the leech. Exocytosis was induced by trains of impulses at different frequencies or by depolarisation with 40 mM potassium (K+), and was quantified by use of the fluorescent dye FM 1-43. Stimulation increased the membrane fluorescence and produced a pattern of FM 1-43 fluorescent spots of 1.28 +/- 0.01 microm in diameter, provided that Ca2+ was present in the bathing fluid. Individual spots lost their stain during depolarisation with 40 mM K+. Electron micrographs showed clusters of dense core vesicles, some of which were in contact with the cell membrane. Presynaptic structures with clear vesicles were absent from the soma. The number of fluorescent spots per soma, but not their diameter or their fluorescence intensity, depended on the frequency of stimulation. Trains at 1 Hz produced 19.5 +/- 5 spots per soma, 77.9 +/- 13.9 spots per soma were produced at 10 Hz and 91.5 +/- 16.9 spots per soma at 20 Hz. Staining patterns were similar for neurones in culture and in situ. In the presence of the L-type Ca2+ channel blocker nimodipine (10 microM), a 20 Hz train produced only 22.9 +/- 6.4 spots per soma, representing a 75 % reduction compared to control cells (P < 0.05). Subsequent incubation with 10 mM caffeine to induce Ca2+ release from intracellular stores increased the number of spots to 73.22 +/- 12.5. Blockers of N-, P-, Q- or invertebrate Ca2+ channels did not affect somatic exocytosis. Our results suggest that somatic exocytosis by neurones shares common mechanisms with excitable endocrine cells.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Exocitose/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Estimulação Elétrica , Corantes Fluorescentes , Sanguessugas , Microscopia Eletrônica , Neurônios/ultraestrutura , Compostos de Piridínio , Compostos de Amônio Quaternário , Coloração e Rotulagem
17.
J Neurobiol ; 61(3): 309-16, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15389693

RESUMO

We analyzed the contribution of calcium (Ca2+)-induced Ca2+ release to somatic secretion in serotonergic Retzius neurons of the leech. Somatic secretion was studied by the incorporation of fluorescent dye FM1-43 upon electrical stimulation with trains of 10 impulses and by electron microscopy. Quantification of secretion with FM1-43 was made in cultured neurons to improve optical resolution. Stimulation in the presence of FM1-43 produced a frequency-dependent number of fluorescent spots. While a 1-Hz train produced 19.5+/-5.0 spots/soma, a 10-Hz train produced 146.7+/-20.2 spots/soma. Incubation with caffeine (10 mM) to induce Ca2+ release from intracellular stores without electrical stimulation and external Ca2+, produced 168+/-21.7 spots/soma. This staining was reduced by 49% if neurons were preincubated with the Ca2+- ATPase inhibitor thapsigargin (200 nM). Moreover, in neurons stimulated at 10 Hz in the presence of ryanodine (100 microM) to block Ca2+-induced Ca2+ release, FM1-43 staining was reduced by 42%. In electron micrographs of neurons at rest or stimulated at 1 Hz in the ganglion, endoplasmic reticulum lay between clusters of dense core vesicles and the plasma membrane. In contrast, in neurons stimulated at 20 Hz, the vesicle clusters were apposed to the plasma membrane and flanked by the endoplasmic reticulum. These results suggest that Ca2+-induced Ca2+ release produces vesicle mobilization and fusion in the soma of Retzius neurons, and supports the idea that neuronal somatic secretion shares common mechanisms with secretion by excitable endocrine cells.


Assuntos
Cálcio/farmacologia , Neurônios/efeitos dos fármacos , Serotonina/metabolismo , Análise de Variância , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/efeitos dos fármacos , Sanguessugas , Magnésio/farmacologia , Microscopia Eletrônica de Transmissão/métodos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Neurônios/ultraestrutura , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Rianodina/farmacologia , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA