Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412939, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115106

RESUMO

Hole-collecting monolayers have greatly advanced the development of positive-intrinsic-negative perovskite solar cells (p-i-n PSCs). To date, however, most of the anchoring groups in the reported monolayer materials are designed to bind to the transparent conductive oxide (TCO) surface, resulting in less availability for other functions such as tuning the wettability of the monolayer surface. In this work, we developed two anchorable molecules, 4PATTI-C3 and 4PATTI-C4, by employing a saddle-like indole-fused cyclooctatetraene as a p-core with four phosphonic acid anchoring groups linked through propyl or butyl chains. Both molecules form monolayers on TCO substrates. Thanks to the saddle shape of a cyclooctatetraene skeleton, two of the four phosphonic acid anchoring groups were found to point upward, resulting in hydrophilic surfaces. Compared to the devices using 4PATTI-C4 as the hole-collecting monolayer, 4PATTI-C3-based devices exhibit a faster hole-collection process, leading to higher power conversion efficiencies of up to 21.7% and 21.4% for a mini-cell (0.1 cm2) and a mini-module (1.62 cm2), respectively, together with good operational stability. This work represents how structural modification of multipodal molecules could substantially modulate the functions of the hole-collecting monolayers after being adsorbed onto TCO substrates.

2.
J Am Chem Soc ; 145(13): 7528-7539, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947735

RESUMO

Hole-collecting monolayers have drawn attention in perovskite solar cell research due to their ease of processing, high performance, and good durability. Since molecules in the hole-collecting monolayer are typically composed of functionalized π-conjugated structures, hole extraction is expected to be more efficient when the π-cores are oriented face-on with respect to the adjacent surfaces. However, strategies for reliably controlling the molecular orientation in monolayers remain elusive. In this work, multiple phosphonic acid anchoring groups were used to control the molecular orientation of a series of triazatruxene derivatives chemisorbed on a transparent conducting oxide electrode surface. Using infrared reflection absorption spectroscopy and metastable atom electron spectroscopy, we found that multipodal derivatives align face-on to the electrode surface, while the monopodal counterpart adopts a more tilted configuration. The face-on orientation was found to facilitate hole extraction, leading to inverted perovskite solar cells with enhanced stability and high-power conversion efficiencies up to 23.0%.

3.
Chemistry ; 29(34): e202300529, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37005224

RESUMO

Organic dyes with strong absorption in the near-infrared (NIR) region are potentially useful in medical applications, such as tumor imaging and photothermal therapy. In this work, new NIR dyes combining BAr2 -bridged azafulvene dimer acceptors with diarylaminothienyl donors in a donor-acceptor-donor configuration were synthesized. Surprisingly, it was found that in these molecules the BAr2 -bridged azafulvene acceptor adopts a 5-membered, rather than 6-membered ring structure. The influence of the aryl substituents on the HOMO and LUMO energy levels of the dye compounds was assessed from electrochemical and optical measurements. Strong electron-withdrawing fluorinated substituents (Ar=C6 F5 , 3,5-(CF3 )2 C6 H3 ) lowered the HOMO energy while preserving the small HOMO-LUMO energy gap, resulting in promising NIR dye molecules that combine strong absorption bands centered around 900 nm with good photostability.

4.
Molecules ; 29(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202617

RESUMO

The phosphole ring is known as a useful building block for constructing π-conjugated organic materials. Here, we report ladder-type benzophospholo[3,2-b]indole (BPI) derivatives where the phosphole and the pyrrole rings are directly fused. Compounds 8a-8d with different aryl groups on the phosphorous center were successfully synthesized, and the solid-state structure of 8a was confirmed using X-ray crystallographic analysis. The BPIs exhibit relatively high fluorescence quantum yield (Φ 0.50-0.72) and demonstrate a larger Stokes shift compared with a series of benzophospholo[3,2-b]benzoheteroles. The benzophospholo[3,2-b]carbazole derivative 9, which possesses a benzene ring between the phosphole and the pyrrole rings of the BPI, was also synthesized, and its solid-state structure was confirmed using X-ray crystallographic analysis. Compound 9 was found to show a smaller Stokes shift compared with the BPI.

5.
Chemistry ; 25(27): 6741-6752, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30805960

RESUMO

A series of two-dimensionally expanded azulene-core-based π systems have been synthesized with different alkyl chain lengths in the alkoxy moieties connected to the partially oxygen-bridged triarylamine skeletons. The thermal, photophysical, and electronic properties of each compound were evaluated to determine the influence of the alkyl chain length on their effectiveness as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). All the synthesized molecules showed promising material properties, including high solubility, the formation of flat and amorphous films, and optimal alignment of energy levels with perovskites. In particular, the derivatives with methyl and n-butyl in the side chains retained amorphous stability up to 233 and 159 °C, respectively. Such short alkoxy chains also resulted in improved electrical device properties. The PSC device fabricated with the HTM with n-butyl side chains showed the best performance with a power conversion efficiency of 18.9 %, which compares favorably with that of spiro-OMeTAD-based PSCs (spiro-OMeTAD=2,2',7,7'-tetrakis[N,N-bis(p-methoxyphenyl)amino]-9,9'-spirobifluorene).

6.
Beilstein J Org Chem ; 12: 805-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340471

RESUMO

Ladder-type π-conjugated compounds containing a benzo[2,1-b:3,4-b']difuran skeleton, such as dibenzo[d,d']benzo[2,1-b:3,4-b']difuran (syn-DBBDF) and dinaphtho[2,3-d:2',3'-d']benzo[2,1-b:3,4-b']difuran (syn-DNBDF) were synthesized. Their photophysical and electrochemical properties were revealed by UV-vis absorption and photoluminescence spectroscopy and cyclic voltammetry. Organic field-effect transistors (OFETs) were fabricated with these compounds as organic semiconductors, and their semiconducting properties were evaluated. OFETs with syn-DBBDF and syn-DNBDF showed typical p-type characteristics with hole mobilities of <1.5 × 10(-3) cm(2)·V(-1)·s(-1) and <1.0 × 10(-1) cm(2)·V(-1)·s(-1), respectively.

7.
J Org Chem ; 80(22): 11566-72, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26506120

RESUMO

Two kinds of ladder-type π-conjugated compounds, benzofuro[3,2-b]indoles (BFIs) and indolo[3,2-b]indoles (IIs), were successfully synthesized using palladium-catalyzed double N-arylation of anilines with the corresponding dihalobiaryls. Photophysical properties were evaluated by UV-vis and photoluminescence spectroscopies and theoretical calculations. BFI derivatives showed higher quantum yields (33-39%) than the II derivative (29%). The absorption bands of the II derivative were more red-shifted compared to BFI derivatives.

8.
ACS Appl Mater Interfaces ; 16(1): 1206-1216, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117238

RESUMO

A novel 9,9'-spirobifluorene derivative bearing thermally cross-linkable vinyl groups (V1382) was developed as a hole-transporting material for perovskite solar cells (PSCs). After thermal cross-linking, a smooth and solvent-resistant three-dimensional (3D) polymeric network is formed such that orthogonal solvents are no longer needed to process subsequent layers. Copolymerizing V1382 with 4,4'-thiobisbenzenethiol (dithiol) lowers the cross-linking temperature to 103 °C via the facile thiol-ene "click" reaction. The effectiveness of the cross-linked V1382/dithiol was demonstrated both as a hole-transporting material in p-i-n and as an interlayer between the perovskite and the hole-transporting layer in n-i-p PSC devices. Both devices exhibit better power conversion efficiencies and operational stability than devices using conventional PTAA or Spiro-OMeTAD hole-transporting materials.

9.
Chem Commun (Camb) ; 60(16): 2172-2175, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38315560

RESUMO

An open-cage bis[60]fulleroid (OC) was applied as an electron transport material (ETM) in tin (Sn) halide perovskite solar cells (PSCs). Due to the reduced offset between the energy levels of Sn-based perovskites and ETMs, the power conversion efficiency (PCE) of Sn-based PSCs with OC reached 9.6% with an open-circuit voltage (VOC) of 0.72 V. Additionally, OC exhibited superior thermal stability and provided 75% of the material without decomposition after vacuum deposition. The PSC using vacuum-deposited OC as the ETM could afford a PCE of 7.6%, which is a big leap forward compared with previous results using vacuum-deposited fullerene derivatives as ETMs.

10.
Adv Mater ; 35(9): e2208320, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36482007

RESUMO

Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. In this work, the top surface treatment of mixed tin-lead (≈1.26 eV) halide perovskite films for p-i-n solar cells is studied. Charge extraction is promoted by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C60 pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, ≈92% of the radiative limit for the bandgap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 h of storage in N2 and encapsulated cells retaining 90% efficiency after >450 h of storage in air. Intriguingly, CPTA preferentially binds to Sn2+ sites at film surface over Pb2+ due to the energetically favored exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and this knowledge is used to fabricate state-of-the-art solar cells.

11.
ACS Appl Mater Interfaces ; 14(50): 56290-56297, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475579

RESUMO

Perovskite interfaces critically influence the final performance of the photovoltaic devices. Optimizing them by reducing the defect densities or improving the contact with the charge transporting material is key to further enhance the efficiency and stability of perovskite solar cells. Inverted (p-i-n) devices can particularly benefit here, as evident from various successful attempts. However, every reported strategy is adapted to specific cell structures and compositions, affecting their robustness and applicability by other researchers. In this work, we present the universality of perovskite top surface post-treatment with ethylenediammonium diiodide (EDAI2) for p-i-n devices. To prove it, we compare devices bearing perovskite films of different composition, i.e., Sn-, Pb-, and mixed Sn-Pb-based devices, achieving efficiencies of up to 11.4, 22.0, and 22.9%, respectively. A careful optimization of the EDAI2 thickness indicates a different tolerance for Pb- and Sn-based devices. The main benefit of this treatment is evident in the open-circuit voltage, with enhancements of up to 200 mV for some compositions. In addition, we prove that this treatment can be successfully applied by both wet (spin-coating) and dry (thermal evaporation) methods, regardless of the composition. The versatility of this treatment makes it highly appealing for industrial application, as it can be easily adapted to specific processing requirements. We present a detailed experimental protocol, aiming to provide the community with an easy, universal perovskite post-treatment method for reliably improving the device efficiency, highlighting the potential of interfaces for the field.

12.
Chem Sci ; 12(40): 13513-13519, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777771

RESUMO

Mixed lead-tin (Pb-Sn) halide perovskites with optimum band gaps near 1.3 eV are promising candidates for next-generation solar cells. However, the performance of solar cells fabricated with Pb-Sn perovskites is restricted by the facile oxidation of Sn(ii) to Sn(iv), which induces self-doping. Maltol, a naturally occurring flavor enhancer and strong metal binding agent, was found to effectively suppress Sn(iv) formation and passivate defects in mixed Pb-Sn perovskite films. When used in combination with Sn(iv) scavenging, the maltol surface treatment led to high-quality perovskite films which showed enhanced photoluminescence intensities and charge carrier lifetimes in excess of 7 µs. The scavenging and surface treatments resulted in highly reproducible solar cell devices, with photoconversion efficiencies of up to 21.4% under AM1.5G illumination.

13.
Nat Commun ; 11(1): 3008, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546736

RESUMO

The toxicity of lead perovskite hampers the commercialization of perovskite-based photovoltaics. While tin perovskite is a promising alternative, the facile oxidation of tin(II) to tin(IV) causes a high density of defects, resulting in lower solar cell efficiencies. Here, we show that tin(0) nanoparticles in the precursor solution can scavenge tin(IV) impurities, and demonstrate that this treatment leads to effectively tin(IV)-free perovskite films with strong photoluminescence and prolonged decay lifetimes. These nanoparticles are generated by the selective reaction of a dihydropyrazine derivative with the tin(II) fluoride additive already present in the precursor solution. Using this nanoparticle treatment, the power conversion efficiency of tin-based solar cells reaches 11.5%, with an open-circuit voltage of 0.76 V. Our nanoparticle treatment is a simple and broadly effective method that improves the purity and electrical performance of tin perovskite films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA