Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(52): 18987-18993, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31617293

RESUMO

Together with the more intuitive and commonly recognized conductance mechanisms of charge-hopping and tunneling, quantum-interference (QI) phenomena have been identified as important factors affecting charge transport through molecules. Consequently, establishing simple and flexible molecular-design strategies to understand, control, and exploit QI in molecular junctions poses an exciting challenge. Here we demonstrate that destructive quantum interference (DQI) in meta-substituted phenylene ethylene-type oligomers (m-OPE) can be tuned by changing the position and conformation of methoxy (OMe) substituents at the central phenylene ring. These substituents play the role of molecular-scale taps, which can be switched on or off to control the current flow through a molecule. Our experimental results conclusively verify recently postulated magic-ratio and orbital-product rules, and highlight a novel chemical design strategy for tuning and gating DQI features to create single-molecule devices with desirable electronic functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA