Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Hered ; 115(4): 411-423, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38624218

RESUMO

The first record of captive-bred red foxes (Vulpes vulpes) dates to 1896 when a breeding enterprise emerged in the provinces of Atlantic Canada. Because its domestication happened during recent history, the red fox offers a unique opportunity to examine the genetic diversity of an emerging domesticated species in the context of documented historical and economic influences. In particular, the historical record suggests that North American and Eurasian farm-bred populations likely experienced different demographic trajectories. Here, we focus on the likely impacts of founder effects and genetic drift given historical trends in fox farming on North American and Eurasian farms. A total of 15 mitochondrial haplotypes were identified in 369 foxes from 10 farm populations that we genotyped (n = 161) or that were previously published. All haplotypes are endemic to North America. Although most haplotypes were consistent with eastern Canadian ancestry, a small number of foxes carried haplotypes typically found in Alaska and other regions of western North America. The presence of these haplotypes supports historical reports of wild foxes outside of Atlantic Canada being introduced into the breeding stock. These putative Alaskan and Western haplotypes were more frequently identified in Eurasian farms compared to North American farms, consistent with historical documentation suggesting that Eurasian economic and breeding practices were likely to maintain low-frequency haplotypes more effectively than in North America. Contextualizing inter- vs. intra-farm genetic diversity alongside the historical record is critical to understanding the origins of this emerging domesticate and the relationships between wild and farm-bred fox populations.


Assuntos
Raposas , Variação Genética , Haplótipos , Raposas/genética , Animais , DNA Mitocondrial/genética , Canadá , Genética Populacional , Animais Domésticos/genética , Domesticação , Cruzamento , Efeito Fundador , Deriva Genética , Fazendas
2.
Hippocampus ; 33(6): 700-711, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37159095

RESUMO

Since 1959, the Russian Farm-Fox study has bred foxes to be either tame or, more recently, aggressive, and scientists have used them to gain insight into the brain structures associated with these behavioral features. In mice, hippocampal area CA2 has emerged as one of the essential regulators of social aggression, and so to eventually determine whether we could identify differences in CA2 between tame and aggressive foxes, we first sought to identify CA2 in foxes (Vulpes vulpes). As no clearly defined area of CA2 has been described in species such as cats, dogs, or pigs, it was not at all clear whether CA2 could be identified in foxes. In this study, we cut sections of temporal lobes from male and female red foxes, perpendicular to the long axis of the hippocampus, and stained them with markers of CA2 pyramidal cells commonly used in tissue from rats and mice. We observed that antibodies against Purkinje cell protein 4 best stained the pyramidal cells in the area spanning the end of the mossy fibers and the beginning of the pyramidal cells lacking mossy fibers, resembling the pattern seen in rats and mice. Our findings indicate that foxes do have a "molecularly defined" CA2, and further, they suggest that other carnivores like dogs and cats might as well. With this being the case, these foxes could be useful in future studies looking at CA2 as it relates to aggression.


Assuntos
Doenças do Gato , Doenças do Cão , Animais , Feminino , Masculino , Cães , Gatos , Camundongos , Ratos , Suínos , Raposas , Encéfalo , Hipocampo
3.
J Neurosci ; 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127519

RESUMO

The Russian fox-farm experiment is an unusually long-running and well-controlled study designed to replicate wolf-to-dog domestication. As such, it offers an unprecedented window onto the neural mechanisms governing the evolution of behavior. Here we report evolved changes to gray matter morphology resulting from selection for tameness vs. aggressive responses toward humans in a sample of 30 male fox brains. Contrasting with standing ideas on the effects of domestication on brain size, tame foxes did not show reduced brain volume. Rather, gray matter volume in both the tame and aggressive strains was increased relative to conventional farm foxes bred without deliberate selection on behavior. Furthermore, tame- and aggressive-enlarged regions overlapped substantially, including portions of motor, somatosensory, and prefrontal cortex, amygdala, hippocampus, and cerebellum. We also observed differential morphological covariation across distributed gray matter networks. In one prefrontal-cerebellum network, this covariation differentiated the three populations along the tame-aggressive behavioral axis. Surprisingly, a prefrontal-hypothalamic network differentiated the tame and aggressive foxes together from the conventional strain. These findings indicate that selection for opposite behaviors can influence brain morphology in a similar way.SIGNIFICANCE STATEMENTDomestication represents one of the largest and most rapid evolutionary shifts of life on earth. However, its neural correlates are largely unknown. Here we report the neuroanatomical consequences of selective breeding for tameness or aggression in the seminal Russian fox-farm experiment. Compared to a population of conventional farm-bred control foxes, tame foxes show neuroanatomical changes in the prefrontal cortex and hypothalamus, paralleling wolf-to-dog shifts. Surprisingly, though, aggressive foxes also show similar changes. Moreover, both strains show increased gray matter volume relative to controls. These results indicate that similar brain adaptations can result from selection for opposite behavior, that existing ideas of brain changes in domestication may need revision, and that significant neuroanatomical change can evolve very quickly - within the span of less than a hundred generations.

4.
Proc Natl Acad Sci U S A ; 115(41): 10398-10403, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30228118

RESUMO

Animal domestication efforts have led to a shared spectrum of striking behavioral and morphological changes. To recapitulate this process, silver foxes have been selectively bred for tame and aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. To understand the genetic basis and molecular mechanisms underlying the phenotypic changes, we profiled gene expression levels and coding SNP allele frequencies in two brain tissue specimens from 12 aggressive foxes and 12 tame foxes. Expression analysis revealed 146 genes in the prefrontal cortex and 33 genes in the basal forebrain that were differentially expressed, with a 5% false discovery rate (FDR). These candidates include genes in key pathways known to be critical to neurologic processing, including the serotonin and glutamate receptor pathways. In addition, 295 of the 31,000 exonic SNPs show significant allele frequency differences between the tame and aggressive populations (1% FDR), including genes with a role in neural crest cell fate determination.


Assuntos
Agressão , Comportamento Animal , Encéfalo/metabolismo , Raposas/genética , Genoma , Seleção Genética , Transcriptoma , Animais , Raposas/psicologia , Genômica , Masculino , Polimorfismo de Nucleotídeo Único , Federação Russa
5.
Behav Genet ; 47(1): 88-101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757730

RESUMO

Individuals involved in a social interaction exhibit different behavioral traits that, in combination, form the individual's behavioral responses. Selectively bred strains of silver foxes (Vulpes vulpes) demonstrate markedly different behaviors in their response to humans. To identify the genetic basis of these behavioral differences we constructed a large F2 population including 537 individuals by cross-breeding tame and aggressive fox strains. 98 fox behavioral traits were recorded during social interaction with a human experimenter in a standard four-step test. Patterns of fox behaviors during the test were evaluated using principal component (PC) analysis. Genetic mapping identified eight unique significant and suggestive QTL. Mapping results for the PC phenotypes from different test steps showed little overlap suggesting that different QTL are involved in regulation of behaviors exhibited in different behavioral contexts. Many individual behavioral traits mapped to the same genomic regions as PC phenotypes. This provides additional information about specific behaviors regulated by these loci. Further, three pairs of epistatic loci were also identified for PC phenotypes suggesting more complex genetic architecture of the behavioral differences between the two strains than what has previously been observed.


Assuntos
Comportamento Animal , Raposas/genética , Comportamento Social , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Epistasia Genética , Feminino , Masculino , Fenótipo , Análise de Componente Principal , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
6.
J Hered ; 108(6): 678-685, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821189

RESUMO

The de novo assembly of the red fox (Vulpes vulpes) genome has facilitated the development of genomic tools for the species. Efforts to identify the population history of red foxes in North America have previously been limited by a lack of information about the red fox Y-chromosome sequence. However, a megabase of red fox Y-chromosome sequence was recently identified over 2 scaffolds in the reference genome. Here, these scaffolds were scanned for repeated motifs, revealing 194 likely microsatellites. Twenty-three of these loci were selected for primer development and, after testing, produced a panel of 11 novel markers that were analyzed alongside 2 markers previously developed for the red fox from dog Y-chromosome sequence. The markers were genotyped in 76 male red foxes from 4 populations: 7 foxes from Newfoundland (eastern Canada), 12 from Maryland (eastern United States), and 9 from the island of Great Britain, as well as 48 foxes of known North American origin maintained on an experimental farm in Novosibirsk, Russia. The full marker panel revealed 22 haplotypes among these red foxes, whereas the 2 previously known markers alone would have identified only 10 haplotypes. The haplotypes from the 4 populations clustered primarily by continent, but unidirectional gene flow from Great Britain and farm populations may influence haplotype diversity in the Maryland population. The development of new markers has increased the resolution at which red fox Y-chromosome diversity can be analyzed and provides insight into the contribution of males to red fox population diversity and patterns of phylogeography.


Assuntos
Raposas/genética , Marcadores Genéticos , Genética Populacional , Cromossomo Y/genética , Animais , Primers do DNA , Fluxo Gênico , Haplótipos , Masculino , Maryland , Repetições de Microssatélites , Terra Nova e Labrador , Filogeografia , Federação Russa , Análise de Sequência de DNA , Reino Unido
7.
Hippocampus ; 25(8): 963-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25616112

RESUMO

Work on laboratory and wild rodents suggests that domestication may impact on the extent of adult hippocampal neurogenesis and its responsiveness to regulatory factors. There is, however, no model of laboratory rodents and their nondomesticated conspecifics that would allow a controlled comparison of the effect of domestication. Here, we present a controlled within-species comparison of adult hippocampal neurogenesis in farm-bred foxes (Vulpes vulpes) that differ in their genetically determined degree of tameness. Quantitative comparisons of cell proliferation (Ki67) and differentiating cells of neuronal lineage (doublecortin, DCX) in the hippocampus of foxes were performed as a proxy for neurogenesis. Higher neurogenesis was observed in tameness-selected foxes, notably in an extended subgranular zone of the middle and temporal compartments of the hippocampus. Increased neurogenesis is negatively associated with aggressive behavior. Across all animals, strong septotemporal gradients were found, with higher numbers of proliferating cells and young neurons relative to resident granule cells in the temporal than in the septal hippocampus. The opposite gradient was found for the ratio of DCX/Ki67- positive cells. When tameness-selected and unselected foxes are compared with rodents and primates, proliferation is similar, while the number of young neurons is higher. The difference may be mediated by an extended period of differentiation or higher rate of survival. On the background of this species-specific neurogenic pattern, selection of foxes for a single behavioral trait key to domestication, i.e., genetic tameness, is accompanied by global and region-specific increases in neurogenesis.


Assuntos
Animais Domésticos/fisiologia , Córtex Entorrinal/citologia , Hipocampo/citologia , Neurogênese/fisiologia , Neurônios/fisiologia , Agressão/fisiologia , Análise de Variância , Animais , Contagem de Células , Diferenciação Celular , Proliferação de Células/fisiologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Raposas/anatomia & histologia , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo
9.
Brain Struct Funct ; 228(5): 1177-1189, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160458

RESUMO

Although the silver fox (Vulpes vulpes) has been largely overlooked by neuroscientists, it has the potential to serve as a powerful model for the investigation of brain-behavior relationships. The silver fox is a melanistic variant of the red fox. Within this species, the long-running Russian farm-fox experiment has resulted in different strains bred to show divergent behavior. Strains bred for tameness, aggression, or without selection on behavior present an excellent opportunity to investigate neuroanatomical changes underlying behavioral characteristics. Here, we present a histological and MRI neuroanatomical reference of a fox from the conventional strain, which is bred without behavioral selection. This can provide an anatomical basis for future studies of the brains of foxes from this particular experiment, as well as contribute to an understanding of fox brains in general. In addition, this can serve as a resource for comparative neuroscience and investigations into neuroanatomical variation among the family Canidae, the order Carnivora, and mammals more broadly.


Assuntos
Agressão , Raposas , Animais , Encéfalo
10.
Mamm Genome ; 23(1-2): 164-77, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22108806

RESUMO

The silver fox provides a rich resource for investigating the genetics of behavior, with strains developed by intensely selective breeding that display markedly different behavioral phenotypes. Until recently, however, the tools for conducting molecular genetic investigations in this species were very limited. In this review, the history of development of this resource and the tools to exploit it are described. Although the focus is on the genetics of domestication in the silver fox, there is a broader context. In particular, one expectation of the silver fox research is that it will be synergistic with studies in other species, including humans, to yield a more comprehensive understanding of the molecular mechanisms and evolution of a wider range of social cognitive behaviors.


Assuntos
Comportamento Animal , Raposas/genética , Raposas/psicologia , Animais , Cruzamento , Mapeamento Cromossômico , Cães , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único , Comportamento Social
11.
BMC Genomics ; 12: 482, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21967120

RESUMO

BACKGROUND: Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. RESULTS: cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. CONCLUSIONS: Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.


Assuntos
Raposas/genética , Córtex Pré-Frontal/metabolismo , Transcriptoma , Animais , Mapeamento de Sequências Contíguas , Bases de Dados Factuais , Cães , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
12.
Behav Genet ; 41(4): 593-606, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21153916

RESUMO

During the second part of the twentieth century, Belyaev selected tame and aggressive foxes (Vulpes vulpes), in an effort known as the "farm-fox experiment", to recapitulate the process of animal domestication. Using these tame and aggressive foxes as founders of segregant backcross and intercross populations we have employed interval mapping to identify a locus for tame behavior on fox chromosome VVU12. This locus is orthologous to, and therefore validates, a genomic region recently implicated in canine domestication. The tame versus aggressive behavioral phenotype was characterized as the first principal component (PC) of a PC matrix made up of many distinct behavioral traits (e.g. wags tail; comes to the front of the cage; allows head to be touched; holds observer's hand with its mouth; etc.). Mean values of this PC for F1, backcross and intercross populations defined a linear gradient of heritable behavior ranging from tame to aggressive. The second PC did not follow such a gradient, but also mapped to VVU12, and distinguished between active and passive behaviors. These data suggest that (1) there are at least two VVU12 loci associated with behavior; (2) expression of these loci is dependent on interactions with other parts of the genome (the genome context) and therefore varies from one crossbred population to another depending on the individual parents that participated in the cross.


Assuntos
Comportamento Animal , Mapeamento Cromossômico/métodos , Raposas/genética , Genética Comportamental , Animais , Animais Domésticos , Cruzamentos Genéticos , Predisposição Genética para Doença , Escore Lod , Modelos Genéticos , Linhagem , Fenótipo , Análise de Componente Principal , Especificidade da Espécie
14.
Genes Brain Behav ; 19(1): e12614, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605445

RESUMO

The underlying neurological events accompanying dog domestication remain elusive. To reconstruct the domestication process in an experimental setting, silver foxes (Vulpes vulpes) have been deliberately bred for tame vs aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. The hypothalamus is an essential part of the hypothalamic-pituitary-adrenal axis and regulates the fight-or-flight response, and thus, we hypothesized that selective breeding for tameness/aggressiveness has shaped the hypothalamic transcriptomic profile. RNA-seq analysis identified 70 differentially expressed genes (DEGs). Seven of these genes, DKKL1, FBLN7, NPL, PRIMPOL, PTGRN, SHCBP1L and SKIV2L, showed the same direction expression differences in the hypothalamus, basal forebrain and prefrontal cortex. The genes differentially expressed across the three tissues are involved in cell division, differentiation, adhesion and carbohydrate processing, suggesting an association of these processes with selective breeding. Additionally, 159 transcripts from the hypothalamus demonstrated differences in the abundance of alternative spliced forms between the tame and aggressive foxes. Weighted gene coexpression network analyses also suggested that gene modules in hypothalamus were significantly associated with tame vs aggressive behavior. Pathways associated with these modules include signal transduction, interleukin signaling, cytokine-cytokine receptor interaction and peptide ligand-binding receptors (eg, G-protein coupled receptor [GPCR] ligand binding). Current studies show the selection for tameness vs aggressiveness in foxes is associated with unique hypothalamic gene profiles partly shared with other brain regions and highlight DEGs involved in biological processes such as development, differentiation and immunological responses. The role of these processes in fox and dog domestication remains to be determined.


Assuntos
Agressão , Raposas/genética , Hipotálamo/metabolismo , Transcriptoma , Animais , Raposas/fisiologia , Redes Reguladoras de Genes
15.
J Hered ; 100 Suppl 1: S42-53, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19546120

RESUMO

High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.


Assuntos
Mapeamento Cromossômico/veterinária , Cromossomos Artificiais Bacterianos/genética , Cães/genética , Raposas/genética , Vison/genética , Animais , Genoma , Genômica/métodos , Hibridização in Situ Fluorescente
16.
Genes (Basel) ; 10(6)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142040

RESUMO

While the number of mammalian genome assemblies has proliferated, Y-chromosome assemblies have lagged behind. This discrepancy is caused by biological features of the Y-chromosome, such as its high repeat content, that present challenges to assembly with short-read, next-generation sequencing technologies. Partial Y-chromosome assemblies have been developed for the cat (Feliscatus), dog (Canislupusfamiliaris), and grey wolf (Canislupuslupus), providing the opportunity to examine the red fox (Vulpesvulpes) Y-chromosome in the context of closely related species. Here we present a data-driven approach to identifying Y-chromosome sequence among the scaffolds that comprise the short-read assembled red fox genome. First, scaffolds containing genes found on the Y-chromosomes of cats, dogs, and wolves were identified. Next, analysis of the resequenced genomes of 15 male and 15 female foxes revealed scaffolds containing male-specific k-mers and patterns of inter-sex copy number variation consistent with the heterogametic chromosome. Analyzing variation across these two metrics revealed 171 scaffolds containing 3.37 Mbp of putative Y-chromosome sequence. The gene content of these scaffolds is consistent overall with that of the Y-chromosome in other carnivore species, though the red fox Y-chromosome carries more copies of BCORY2 and UBE1Y than has been reported in related species and fewer copies of SRY than in other canids. The assignment of these scaffolds to the Y-chromosome serves to further characterize the content of the red fox draft genome while providing resources for future analyses of canid Y-chromosome evolution.


Assuntos
Raposas/genética , Genoma , Cromossomo Y/genética , Animais , Carnívoros/genética , Gatos , Variações do Número de Cópias de DNA/genética , Cães , Feminino , Masculino , Filogenia , Lobos/genética
17.
G3 (Bethesda) ; 8(3): 859-873, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29378821

RESUMO

Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Agressão , Comportamento Animal , Raposas/genética , Raposas/metabolismo , Adeno-Hipófise/metabolismo , Transcriptoma , Processamento Alternativo , Animais , Biologia Computacional/métodos , Domesticação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal
18.
Genes (Basel) ; 9(6)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925783

RESUMO

The genome of a red fox (Vulpes vulpes) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.

19.
Nat Ecol Evol ; 2(9): 1479-1491, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082739

RESUMO

Strains of red fox (Vulpes vulpes) with markedly different behavioural phenotypes have been developed in the famous long-term selective breeding programme known as the Russian farm-fox experiment. Here we sequenced and assembled the red fox genome and re-sequenced a subset of foxes from the tame, aggressive and conventional farm-bred populations to identify genomic regions associated with the response to selection for behaviour. Analysis of the re-sequenced genomes identified 103 regions with either significantly decreased heterozygosity in one of the three populations or increased divergence between the populations. A strong positional candidate gene for tame behaviour was highlighted: SorCS1, which encodes the main trafficking protein for AMPA glutamate receptors and neurexins and suggests a role for synaptic plasticity in fox domestication. Other regions identified as likely to have been under selection in foxes include genes implicated in human neurological disorders, mouse behaviour and dog domestication. The fox represents a powerful model for the genetic analysis of affiliative and aggressive behaviours that can benefit genetic studies of behaviour in dogs and other mammals, including humans.


Assuntos
Agressão , Comportamento Animal , Raposas/fisiologia , Genoma , Animais , Feminino , Masculino
20.
Nat Ecol Evol ; 2(9): 1514, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104754

RESUMO

In the version of this Article originally published, there were some errors in the affiliations: Stephen J. O'Brien's affiliations were incorrectly listed as 8,9; they should have been 7,9. Affiliation 3 was incorrectly named the Institute of Cytology and Genetics of the Russian Academy of Sciences; it should have read Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences. Affiliation 4 was incorrectly named the Institute of Molecular and Cell Biology of the Russian Academy of Sciences; it should have read Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences. These have now been corrected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA