RESUMO
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target â¼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Quinases/metabolismo , Animais , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cães , Humanos , Mucosa Intestinal/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos Transgênicos , Organoides/metabolismo , Interferência de RNARESUMO
The most common mutation in cystic fibrosis (CF) is a deletion of Phe at position 508 (ΔF508-CFTR). ΔF508-CFTR is a trafficking mutant that is retained in the ER, unable to reach the plasma membrane. To identify compounds and drugs that rescue this trafficking defect, we screened a kinase inhibitor library enriched for small molecules already in the clinic or in clinical trials for the treatment of cancer and inflammation, using our recently developed high-content screen technology (Trzcinska-Daneluti et al. Mol. Cell. Proteomics 8:780, 2009). The top hits of the screen were further validated by (1) biochemical analysis to demonstrate the presence of mature (Band C) ΔF508-CFTR, (2) flow cytometry to reveal the presence of ΔF508-CFTR at the cell surface, (3) short-circuit current (Isc) analysis in Ussing chambers to show restoration of function of the rescued ΔF508-CFTR in epithelial MDCK cells stably expressing this mutant (including EC(50) determinations), and importantly (4) Isc analysis of Human Bronchial Epithelial (HBE) cells harvested from homozygote ΔF508-CFTR transplant patients. Interestingly, several inhibitors of receptor Tyr kinases (RTKs), such as SU5402 and SU6668 (which target FGFRs, VEGFR, and PDGFR) exhibited strong rescue of ΔF508-CFTR, as did several inhibitors of the Ras/Raf/MEK/ERK or p38 pathways (e.g. (5Z)-7-oxozeaenol). Prominent rescue was also observed by inhibitors of GSK-3ß (e.g. GSK-3ß Inhibitor II and Kenpaullone). These results identify several kinase inhibitors that can rescue ΔF508-CFTR to various degrees, and suggest that use of compounds or drugs already in the clinic or in clinical trials for other diseases can expedite delivery of treatment for CF patients.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Transporte de Íons/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Benzazepinas/farmacologia , Linhagem Celular , Cricetinae , Fibrose Cística/metabolismo , Cães , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Indóis/farmacologia , Proteínas de Membrana , Oxindóis , Propionatos , Transporte Proteico , Proteínas Tirosina Quinases/genética , Pirróis/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Deleção de Sequência , Transdução de Sinais , Zearalenona/análogos & derivados , Zearalenona/farmacologiaRESUMO
Cystic Fibrosis is caused by mutations in CFTR, with a deletion of a phenylalanine at position 508 (F508del-CFTR) representing the most common mutation. The F508del-CFTR protein exhibits a trafficking defect and is retained in the endoplasmic reticulum. Here we describe the development of a high-content screen based on a functional assay to identify proteins that correct the F508del-CFTR defect. Using a HEK293 MSR GripTite cell line that stably expresses F508del-CFTR, we individually co-expressed approximately 450 unique proteins fused to the Cl(-)-sensitive YFP(H148Q/I152L) mutant. We then tested correction of F508del-CFTR function by the CI(-)/l(-) exchange method following stimulation with forskolin/IBMX/genistein, using quantitative recordings in multiple individual cells with a high-content (high-throughput) Cellomics KSR imaging system. Using this approach, we identified several known and novel proteins that corrected F508del-CFTR function, including STAT1, Endothelin 1, HspA4, SAPK substrate protein 1, AP2M1, LGALS3/galectin-3, Trk-fused gene, Caveolin 2, PAP/REG3alpha, and others. The ability of these correctors to rescue F508del-CFTR trafficking was then validated by demonstrating their enhancement of maturation (appearance of band C) and by cell surface expression of F508del-CFTR bearing HA tag at the ectodomain using confocal microscopy and flow cytometry. These data demonstrate the utility of high-content analyses for identifying proteins that correct mutant CFTR and discover new proteins that stimulate this correction. This assay can also be utilized for RNAi screens to identify inhibitory proteins that block correction of F508del-CFTR, small molecule, and peptide screens.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteoma/análise , Proteômica/métodos , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Microscopia Confocal , Proteínas Mutantes/metabolismo , Pirazinas/farmacologia , Reprodutibilidade dos Testes , TemperaturaRESUMO
RNA recognition motif (RRM) domains bind both nucleic acids and proteins. Several proteins that contain two closely spaced RRM domains were previously found in protein complexes formed by the cap region of human topoisomerase I, a nuclear enzyme responsible for DNA relaxation or phosphorylation of SR splicing proteins. To obtain molecular insight into specific interactions between the RRM proteins and the cap region of topo I we examined their binary interactions using the yeast two-hybrid system. The interactions were established for hnRNP A1, p54(nrb) and SF2/ASF, but not for hnRNP L or HuR. To identify the amino acid pattern responsible for binding, experimental mutagenesis was employed and computational modelling of these processes was carried out. These studies revealed that two RRM domains and six residues of the consensus sequence are required for the binding to the cap region. On the basis of the above data, a structural model for the hnRNP A1-topoisomerase I complex was proposed. The main component of the hnRNP A1 binding site is a hydrophobic pocket on the beta-surface of the first RRM domain, similar to that described for Y14 protein interacting with Mago. We demonstrated that the interaction between RRM domains and the cap region was important for the kinase reaction catalyzed by topoisomerase I. Together with the previously described inhibitory effect of RRM domains of SF2/ASF on DNA cleavage, the above suggests that the binding of RRM proteins could regulate the activity of topoisomerase I.