Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Cell Physiol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662403

RESUMO

Plant-parasitic root knot nematodes are major agricultural pests worldwide, as they infect plant roots and cause substantial damages to crop plants. Root-knot nematodes induce specialized feeding cells known as giant cells in the root vasculature, which serve as nutrient reservoirs for the infecting nematodes. Here we show that the cell walls of giant cells thicken to form pitted patterns that superficially resemble to metaxylem cells. Interestingly, VASCULAR-RELATED NAC-DOMAIN1 (VND1) was found to be up-regulated, while the xylem-type programmed cell death marker XYLEM CYSTEINE PEPTIDASE 1 (XCP1) was down-regulated upon nematode infection. The vnd2 and vnd3 mutants showed reduced secondary cell wall pore size, while the vnd1 vnd2 vnd3 triple mutant produced significantly fewer nematode egg masses when compared with the wild type. These results suggest that giant cell development pathway likely share common signaling modules with the metaxylem differentiation pathway, and VND1, VND2, and VND3 redundantly regulate plant-nematode interaction through secondary cell wall formation.

2.
Plant Cell Physiol ; 62(12): 1847-1857, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34195842

RESUMO

In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research.


Assuntos
Biotecnologia , Mucilagem Vegetal/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Parede Celular/metabolismo
3.
Arch Orthop Trauma Surg ; 139(9): 1193-1201, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30874896

RESUMO

BACKGROUND: Total joint arthroplasty (TJA) is a major orthopedic procedure associated with substantial morbidity and mortality. Never events (NEs) are harmful hospital-acquired conditions (HACs) that are preventable. METHODS: Information on hospital admissions with TJA was collected from the National Inpatient Sample (NIS) from 2003 to 2012. NIS was queried to identify NE applicable to TJA patients based on the HAC definition listed by the Centers for Medicare and Medicaid Services (CMS). NEs were further compared before and after 2008 to evaluate the effect of the new CMS non-reimbursement policy on their incidence. RESULTS: A total of 8,176,774 patients were admitted with TJA from 2003 to 2012. 108,668 patients of these (1.33%) had ≥ 1 NE. The most prevalent NE was fall and trauma (0.7%). Significant multivariable predictors with higher odds of developing at least one NE included weekend admission [odds ratio (99.9% CI), 4.3 (3.1, 5.8), p < 0.001] and weight loss [odds ratio (99.9% CI), 2.8 (2.2, 3.5), p < 0.001]. A temporal comparison of NE before and after 2008 revealed a decrease in total NE occurrence after 2008 when the CMS announced discontinuing payment for NE (1.39% vs. 1.25%, p < 0.001). After adjustment for potential confounding risk factors, NE after TJA was significantly associated with an increased mortality (p < 0.001), a longer hospital stay (p < 0.001), and higher total hospitalization charges (p < 0.001). CONCLUSIONS: These data demonstrated that NE in TJA patients was predictive of an increased mortality, length of hospital stay, and hospitalization costs. This study established baseline NE rates in the TJA patient population to use as benchmarks and identified target areas for quality improvement in US.


Assuntos
Artroplastia , Doença Iatrogênica/epidemiologia , Erros Médicos/estatística & dados numéricos , Artroplastia/efeitos adversos , Artroplastia/estatística & dados numéricos , Custos Hospitalares/estatística & dados numéricos , Humanos , Prevalência , Estados Unidos/epidemiologia
5.
Plant Physiol ; 173(2): 1059-1074, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28003327

RESUMO

Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Parede Celular/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
BMC Musculoskelet Disord ; 19(1): 393, 2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30414614

RESUMO

BACKGROUND: Osteoarthritis (OA) is associated with worsening physical function and a high prevalence of comorbid health conditions. In particular, cardiovascular disease (CVD) risk is higher in individuals with OA than the general population. Limitations in physical function may be one pathway to the development of CVD among individuals with OA. This study evaluated associations of symptomatic knee OA (sxKOA), baseline physical function and worsening of function over time with self-reported incident CVD in a community-based cohort. METHODS: Our sample consisted of individuals from the Johnston County Osteoarthritis Project who did not report having CVD at baseline. Variables used to evaluate physical function were the Health Assessment Questionnaire (HAQ), time to complete 5 chair stands, and the 8-ft walk. Worsening function for these variables was defined based on previous literature and cutoffs from our sample. Logistic regression analyses examined associations of sxKOA, baseline function and worsening of function over time with self-reported incident CVD, unadjusted and adjusted for relevant demographic and clinical characteristics. RESULTS: Among 1709 participants included in these analyses, the mean age was 59.5 ± 9.5 years, 63.6% were women, 15% had sxKOA, and the follow up time was 5.9 ± 1.2 years. About a third of participants reported worsening HAQ score, about two-fifths had worsened chair stand time, half had worsened walking speed during the 8-ft walk, and 16% self-reported incident CVD. In unadjusted analyses, sxKOA, baseline function, and worsening function were all associated with self-reported incident CVD. In multivariable models including all of these variables, sxKOA was not associated with incident CVD, but worsening function was significantly associated with increased CVD risk, for all three functional measures: HAQ odds ratio (OR) = 2.49 (95% confidence interval (CI) 1.90-3.25), chair stands OR = 1.58 (95% CI 1.20-2.08), 8-ft walk OR = 1.53 (95%CI 1.15-2.04). These associations for worsening function remained in models additionally adjusted for demographic and clinical characteristics related to CVD risk. CONCLUSIONS: The association between symptomatic knee osteoarthritis and cardiovascular disease risk was explained by measures of physical function. This highlights the importance of physical activity and other strategies to prevent functional loss among individuals with symptomatic knee osteoarthritis.


Assuntos
Doenças Cardiovasculares/epidemiologia , Exercício Físico/fisiologia , Osteoartrite do Joelho/epidemiologia , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Estudos de Coortes , Feminino , Inquéritos Epidemiológicos/métodos , Inquéritos Epidemiológicos/tendências , Humanos , Incidência , Vida Independente/tendências , Masculino , Pessoa de Meia-Idade , North Carolina/epidemiologia , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/fisiopatologia , Fatores de Risco , Teste de Caminhada/métodos , Teste de Caminhada/tendências
7.
J Exp Bot ; 68(15): 4219-4231, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922765

RESUMO

The transcription factor FUSCA3 (FUS3) acts as a major regulator of seed maturation in Arabidopsis. FUS3 is phosphorylated by the SnRK1 catalytic subunit AKIN10/SnRK1α1, which belongs to a conserved eukaryotic kinase complex involved in energy homeostasis. Here we show that AKIN10 and FUS3 share overlapping expression patterns during embryogenesis, and that FUS3 is phosphorylated by AKIN10 in embryo cell extracts. To understand the role of FUS3 phosphorylation, we generated fus3-3 plants carrying FUS3 phosphorylation-null (FUS3S>A) and phosphorylation-mimic (FUS3S>D) variants. While FUS3S>A and FUS3S>D rescued all the fus3-3 seed maturation defects, FUS3S>A showed reduced transcriptional activity and enhanced fus3-3 previously uncharacterized phenotypes. FUS3S>A embryos displayed increased seed abortion due to maternal FUS3S>A and delayed embryo development, which correlated with a strong decrease in seed yield (~50%). Accordingly, the akin10 and akin11 mutants displayed a frequency of seed abortion similar to fus3-3. When plants were grown at elevated temperature, most phenotypes were exaggerated in FUS3S>A plants, and progeny seedlings overall grew poorly, suggesting that phosphorylation of FUS3 plays an important role during early embryogenesis and under heat stress. Collectively, these results suggest that FUS3 phosphorylation and SnRK1 are required for embryogenesis and integration of environmental cues to ensure the survival of the progeny.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
8.
Plant Physiol ; 165(3): 991-1004, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24808103

RESUMO

Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitation. Rhamnogalacturonan I (RG I) is the primary component of adherent mucilage, with homogalacturonan, cellulose, and xyloglucan constituting minor components. Adherent mucilage contains rays composed of cellulose and pectin that extend above the center of each epidermal cell. CELLULOSE SYNTHASE5 (CESA5) and the arabinogalactan protein SALT-OVERLY SENSITIVE5 (SOS5) are required for mucilage adherence through unknown mechanisms. SOS5 has been suggested to mediate adherence by influencing cellulose biosynthesis. We, therefore, investigated the relationship between SOS5 and CESA5. cesa5-1 seeds show reduced cellulose, RG I, and ray size in adherent mucilage. In contrast, sos5-2 seeds have wild-type levels of cellulose but completely lack adherent RG I and rays. Thus, relative to each other, cesa5-1 has a greater effect on cellulose, whereas sos5-2 mainly affects pectin. The double mutant cesa5-1 sos5-2 has a much more severe loss of mucilage adherence, suggesting that SOS5 and CESA5 function independently. Double-mutant analyses with mutations in MUCILAGE MODIFIED2 and FLYING SAUCER1 that reduce mucilage release through pectin modification suggest that only SOS5 influences pectin-mediated adherence. Together, these findings suggest that SOS5 mediates adherence through pectins and does so independently of but in concert with cellulose synthesized by CESA5.

9.
Plant J ; 69(5): 809-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22026387

RESUMO

The Snf1 (sucrose non-fermenting-1)/AMPK (AMP-activated protein kinase)/SnRK1 (Snf1-related protein kinase 1) kinases act as sensors of energy status in eukaryotes. Despite the important role of these kinases in regulation of cellular responses to metabolic stress, only a few SnRK1 substrates have been identified. Using yeast two-hybrid screens, we isolated AKIN10 as an interactor of the B3-domain transcription factor FUSCA3 (FUS3), an essential regulator of seed maturation in Arabidopsis. Pull-down and bi-molecular fluorescence complementation (BiFC) assays confirm the interaction in vitro and in planta, respectively. In-gel kinase assays show that AKIN10 phosphorylates FUS3 and that the N-terminal domain of FUS3 is required for AKIN10 phosphorylation. Mutations of three serines (fus3(S55A/S56A/S57A) ) within a partial SnRK1 consensus sequence in the N-terminal region of FUS3 reduce greatly FUS3 phosphorylation by AKIN10, which indicates that these serines are the predominant AKIN10 target sites. In a cell-free system, AKIN10 positively regulates FUS3 stability, as overexpression of AKIN10 delayed the degradation of the recombinant FUS3. Plants over-expressing AKIN10 show delayed seed germination, vegetative growth and flowering time, indicating that AKIN10 antagonizes the embryonic-to-vegetative and vegetative-to-reproductive phase transitions. Furthermore, overexpression of AKIN10 alters cotyledon, silique and floral organ development, suggesting that AKIN10 regulates lateral organ development. Genetic interaction studies show that the fus3-3 mutation partially rescues the phase transition and organ development defects caused by AKIN10 overexpression. Taken together, these findings indicate that FUS3 and AKIN10 interact physically and share overlapping pathways to regulate developmental phase transitions and organogenesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cotilédone/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fosforilação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
10.
Sci Rep ; 13(1): 7473, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160914

RESUMO

Root penetration into the soil is essential for plants to access water and nutrients, as well as to mechanically support aboveground structures. This requires a combination of healthy plant growth, adequate soil mechanical properties, and compatible plant-soil interactions. Despite the current knowledge of the static rheology driving the interactions at the root-soil interface, few theoretical approaches have attempted to describe root penetration with dynamic rheology. In this work, we experimentally showed that radish roots in contact with soil of specific density during a specific growth stage fail to penetrate the soil. To explore the mechanism of root penetration into the soil, we constructed a theoretical model to explore the relevant conditions amenable to root entry into the soil. The theory indicates that dimensionless parameters such as root growth anisotropy, static root-soil competition, and dynamic root-soil competition are important for root penetration. The consequent theoretical expectations were supported by finite element analysis, and a potential mechanism of root penetration into the soil is discussed.


Assuntos
Solo , Anisotropia , Análise de Elementos Finitos , Raízes de Plantas
11.
Sci Adv ; 9(22): eadf4803, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267361

RESUMO

Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.


Assuntos
Plantas , Tylenchoidea , Animais , Transdução de Sinais , Tylenchoidea/fisiologia
13.
Front Plant Sci ; 13: 1008725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777533

RESUMO

Introduction: The soil houses a tremendous amount of micro-organisms, many of which are plant parasites and pathogens by feeding off plant roots for sustenance. Such root pathogens and parasites often rely on plant-secreted signaling molecules in the rhizosphere as host guidance cues. Here we describe the isolation and characterization of a chemoattractant of plant-parasitic root-knot nematodes (Meloidogyne incognita, RKN). Methods: The Super-growing Root (SR) culture, consisting of excised roots from the legume species Lotus corniculatus L., was found to strongly attract infective RKN juveniles and actively secrete chemoattractants into the liquid culture media. The chemo-attractant in the culture media supernatant was purified using hydrophobicity and anion exchange chromatography, and found to be enriched in carbohydrates. Results: Monosaccharide analyses suggest the chemo-attractant contains a wide array of sugars, but is enriched in arabinose, galactose and galacturonic acid. This purified chemoattractant was shown to contain pectin, specifically anti-rhamnogalacturonan-I and anti-arabinogalactan protein epitopes but not anti-homogalacturonan epitopes. More importantly, the arabinose and galactose sidechain groups were found to be essential for RKN-attracting activities. This chemo-attractant appears to be specific to M. incognita, as it wasn't effective in attracting other Meloidogyne species nor Caenorhabditis elegans. Discussion: This is the first report to identify the nematode attractant purified from root exudate of L corniculatus L. Our findings re-enforce pectic carbohydrates as important chemicals mediating micro-organism chemotaxis in the soil, and also highlight the unexpected utilities of the SR culture system in root pathogen research.

14.
Front Plant Sci ; 13: 1019427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466293

RESUMO

Parasites and pathogens are known to manipulate the host's endogenous signaling pathways to facilitate the infection process. In particular, plant-parasitic root-knot nematodes (RKN) are known to elicit auxin response at the infection sites, to aid the development of root galls as feeding sites for the parasites. Here we describe the role of local auxin synthesis induced during RKN infection. Exogenous application of auxin synthesis inhibitors decreased RKN gall formation rates, gall size and auxin response in galls, while auxin and auxin analogues produced the opposite effects, re-enforcing the notion that auxin positively regulates RKN gall formation. Among the auxin biosynthesis enzymes, YUCCA4 (YUC4) was found to be dramatically up-regulated during RKN infection, suggesting it may be a major contributor to the auxin accumulation during gall formation. However, yuc4-1 showed only very transient decrease in gall auxin levels and did not show significant changes in RKN infection rates, implying the loss of YUC4 is likely compensated by other auxin sources. Nevertheless, yuc4-1 plants produced significantly smaller galls with fewer mature females and egg masses, confirming that auxin synthesized by YUC4 is required for proper gall formation and RKN development within. Interestingly, YUC4 promoter was also activated during cyst nematode infection. These lines of evidence imply auxin biosynthesis from multiple sources, one of them being YUC4, is induced upon plant endoparasitic nematode invasion and likely contribute to their infections. The coordination of these different auxins adds another layer of complexity of hormonal regulations during plant parasitic nematode interaction.

15.
Plant J ; 64(1): 100-13, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20663088

RESUMO

The transcription factor FUSCA3 (FUS3) controls the transition from the embryonic to the vegetative phase of development by regulating abscisic acid (ABA) and gibberellic acid (GA) levels in Arabidopsis thaliana. In a feedback loop, FUS3 accumulation is negatively and positively regulated by GA and ABA, respectively, by an uncharacterized mechanism. Here, we use a FUS3-GFP construct to show that the level of the FUS3 protein decreases dramatically during mid to late embryogenesis, whereas its mRNA is present at a high level. Deletion studies identify a C-terminal domain (CTD) that negatively regulates mRNA and protein levels, and mediates sensitivity to ABA and GA. Indeed, a CTD-truncated FUS3 variant accumulates at high level, and is insensitive to the destabilizing and stabilizing effects of GA and ABA, respectively. In contrast, fusion of various fragments of the CTD with GFP is sufficient to greatly reduce GFP fluorescence. The GFP-CTD fluorescence can be increased by ABA and paclobutrazol, an inhibitor of GA biosynthesis. Cell-free degradation assays show that FUS3 is a short-lived protein. FUS3 degradation follows the 26S proteasome in vitro and in vivo, and the CTD affects its degradation rate. In contrast to the native form, the CTD-truncated FUS3 is unable to fully rescue the fus3-3 mutant, and is thus required for FUS3 function. In conclusion, this study identifies a CTD that maintains low levels of FUS3 during embryogenesis and early germination, and is required for normal FUS3 function and sensitivity to ABA and GA.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Germinação , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
16.
Plant Direct ; 5(11): e360, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34877448

RESUMO

Although asymmetric deposition of the plant extracellular matrix is critical for the normal functioning of many cell types, the molecular mechanisms establishing this asymmetry are not well understood. During differentiation, Arabidopsis seed coat epidermal cells deposit large amounts of pectin-rich mucilage asymmetrically to form an extracellular pocket between the plasma membrane and the outer tangential primary cell wall. At maturity, the mucilage expands on contact with water, ruptures the primary cell wall, and extrudes to encapsulate the seed. In addition to polysaccharides, mucilage contains secreted proteins including the ß-galactosidase MUCILAGE MODIFIED 2 (MUM2). A functional chimeric protein where MUM2 was fused translationally with Citrine yellow fluorescent protein (Citrine) indicated that MUM2-Citrine fluorescence preferentially accumulates in the mucilage pocket concomitant with mucilage deposition and rapidly disappears when mucilage synthesis ceases. A secreted form of Citrine, secCitrine, showed a similar pattern of localization when expressed in developing seed coat epidermal cells. This result suggested that both the asymmetric localization and rapid decrease of fluorescence is not unique to MUM2-Citrine and may represent the default pathway for secreted proteins in this cell type. v-SNARE proteins were localized only in the membrane adjacent to the mucilage pocket, supporting the hypothesis that the cellular secretory apparatus is redirected and targets secretion to the outer periclinal apoplast during mucilage synthesis. In addition, mutation of ECHIDNA, a gene encoding a TGN-localized protein involved in vesicle targeting, causes misdirection of mucilage, MUM2 and v-SNARE proteins from the apoplast/plasma membrane to the vacuole/tonoplast. Western blot analyses suggested that the disappearance of MUM2-Citrine fluorescence at the end of mucilage synthesis is due to protein degradation and because several proteases have been identified in extruded seed mucilage. However, as mutation of these genes did not result in a substantial delay in MUM2-Citrine degradation and the timing of their expression and/or their intracellular localization were not consistent with a role in MUM2-Citrine disappearance, the mechanism underlying the abrupt decrease of MUM2-Citrine remains unclear.

17.
Front Plant Sci ; 12: 755610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691131

RESUMO

Parasitic root-knot nematodes transform the host's vascular cells into permanent feeding giant cells (GCs) to withdraw nutrients from the host plants. GCs are multinucleated metabolically active cells with distinctive cell wall structures; however, the genetic regulation of GC formation is largely unknown. In this study, the functions of the Arabidopsis thaliana transcription factor PUCHI during GC development were investigated. PUCHI expression was shown to be induced in early developing galls, suggesting the importance of the PUCHI gene in gall formation. Despite the puchi mutant not differing significantly from the wild type in nematode invasion and reproduction rates, puchi GC cell walls appeared to be thicker and lobate when compared to the wild type, while the cell membrane sometimes formed invaginations. In three-dimensional (3D) reconstructions of puchi GCs, they appeared to be more irregularly shaped than those in the wild type, with noticeable cell-surface protrusions and folds. Interestingly, the loss-of-function mutant of 3-KETOACYL-COA SYNTHASE 1 showed GC morphology and cell wall defects similar to those of the puchi mutant, suggesting that PUCHI may regulate GC development via very long chain fatty acid synthesis.

18.
Sci Adv ; 7(27)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34215589

RESUMO

Root-knot nematodes (RKNs) are plant parasites and major agricultural pests. RKNs are thought to locate hosts through chemotaxis by sensing host-secreted chemoattractants; however, the structures and properties of these attractants are not well understood. Here, we describe a previously unknown RKN attractant from flaxseed mucilage that enhances infection of Arabidopsis and tomato, which resembles the pectic polysaccharide rhamnogalacturonan-I (RG-I). Fucose and galactose sidechains of the purified attractant were found to be required for attractant activity. Furthermore, the disaccharide α-l-galactosyl-1,3-l-rhamnose, which forms the linkage between the RG-I backbone and galactose sidechains of the purified attractant, was sufficient to attract RKN. These results show that the α-l-galactosyl-1,3-l-rhamnose linkage in the purified attractant from flaxseed mucilage is essential for RKN attraction. The present work also suggests that nematodes can detect environmental chemicals with high specificity, such as the presence of chiral centers and hydroxyl groups.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Quimiotaxia , Galactose , Ramnose
19.
Front Plant Sci ; 11: 1167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849722

RESUMO

Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts via chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant-microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole.

20.
Mol Plant ; 13(4): 658-665, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31891776

RESUMO

Root-knot nematodes (RKNs; genus Meloidogyne) are a class of plant parasites that infect the roots of many plant species. It is believed that RKNs target certain signaling molecules derived from plants to locate their hosts; however, currently, no plant compound has been unambiguously identified as a universal RKN attractant. To address this question, we screened a chemical library of synthetic compounds for Meloidogyne incognita attractants. The breakdown product of aminopropylamino-anthraquinone, 1,3-diaminopropane, as well as its related compounds, putrescine and cadaverine, were found to attract M. incognita. After examining various polyamines, M. incognita were found to be attracted specifically by natural compounds that possess three to five methylene groups between two terminal amino groups. Using cryo-TOF-SIMS/SEM, cadaverine was indeed detected in soybean root cortex cells and the surrounding rhizosphere, establishing a chemical gradient. In addition to cadaverine, putrescine and 1,3-diaminopropane were also detected in root exudate by HPLC-MS/MS. Furthermore, exogenously applied cadaverine is sufficient to enhance M. incognita infection of Arabidopsis seedlings. These results suggest that M. incognita is likely attracted by polyamines to locate the appropriate host plants, and the naturally occurring polyamines have potential applications in agriculture in developing protection strategies for crops from RKN infection.


Assuntos
Quimiotaxia/efeitos dos fármacos , Raízes de Plantas/parasitologia , Poliaminas/farmacologia , Tylenchoidea/fisiologia , Animais , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Exsudatos de Plantas/química , Raízes de Plantas/química , Plantas/química , Plantas/parasitologia , Poliaminas/química , Rizosfera , Plântula/parasitologia , Tylenchoidea/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA