Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 146: 274-283, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487427

RESUMO

Osteoarthritis (OA) is a joint disease affecting millions of patients worldwide. During OA onset and progression, the articular cartilage is destroyed, but the underlying complex mechanisms remain unclear. Here, we uncover changes in the thickness of collagen fibers and their composition at the onset of OA. For articular cartilage explants from knee joints of OA patients, we find that type I collagen-rich fibrocartilage-like tissue was formed in macroscopically intact cartilage, distant from OA lesions. Importantly, the number of thick fibers (>100 nm) has decreased early in the disease, followed by complete absence of thick fibers in advanced OA. We have obtained these results by a combination of high-resolution atomic force microscopy imaging under near-native conditions, immunofluorescence, scanning electron microscopy and a fluorescence-based classification of the superficial chondrocyte spatial organization. Taken together, our data suggests that the loss of tissue functionality in early OA cartilage is caused by a reduction of thick type II collagen fibers, likely due to the formation of type I collagen-rich fibrocartilage, followed by the development of focal defects in later OA stages. We anticipate that such an integrative characterization will be very beneficial for an in-depth understanding of other native biological tissues and the development of sustainable biomaterials. STATEMENT OF SIGNIFICANCE: In early osteoarthritis (OA) the cartilage appears macroscopically intact. However, this study demonstrates that the collagen network already changes in early OA by collagen fiber thinning and the formation of fibrocartilage-like tissue. Both nanoscopic deficiencies already occur in macroscopically intact regions of the human knee joint and are likely connected to processes that result in a weakened extracellular matrix. This study enhances the understanding of earliest progressive cartilage degeneration in the absence of external damage. The results suggest a determination of the mean collagen fiber thickness as a new target for the detection of early OA and a regulation of type I collagen synthesis as a new path for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/patologia , Condrócitos/fisiologia , Colágeno Tipo I , Colágeno Tipo II , Humanos , Osteoartrite/patologia
2.
J Biomed Mater Res B Appl Biomater ; 110(5): 1165-1177, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34904786

RESUMO

The development of multifunctional biomaterials as both tissue regeneration and drug delivery devices is currently a major focus in biomedical research. Tannic Acid (TA), a naturally occurring plant polyphenol, displays unique medicinal abilities as an antioxidant, an antibiotic, and as an anticancer agent. TA has applications in biomaterials acting as a crosslinker in polymer hydrogels improving thermal stability and mechanical properties. We have developed injectable cell seeded collagen beads crosslinked with TA for breast reconstruction and anticancer activity following lumpectomy. This study determined the longevity of the bead implants by establishing a degradation time line and TA release profile in vivo. Beads crosslinked with 0.1% TA and 1% TA were compared to observe the differences in TA concentration on degradation and release. We found collagen/TA beads degrade at similar rates in vivo, yet are resistant to complete degradation after 16 weeks. TA is released over time in vivo through diffusion and cellular activity. Changes in mechanical properties in collagen/TA beads before implantation to after 8 weeks in vivo also indicate loss of TA over a longer period of time. Elastic moduli decreased uniformly in both 0.1% and 1% TA beads. This study establishes that collagen/TA materials can act as a drug delivery system, rapidly releasing TA within the first week following implantation. However, the beads retain TA long term allowing them to resist degradation and remain in situ acting as a cell scaffold and tissue filler. This confirms its potential use as an anticancer and minimally invasive breast reconstructive device following lumpectomy.


Assuntos
Hidrogéis , Taninos , Materiais Biocompatíveis , Colágeno/farmacologia , Taninos/farmacologia , Cicatrização
3.
Acta Biomater ; 126: 315-325, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753314

RESUMO

Atomic force microscopy (AFM) has become a powerful tool for the characterization of materials at the nanoscale. Nevertheless, its application to hierarchical biological tissue like cartilage is still limited. One reason is that such samples are usually millimeters in size, while the AFM delivers much more localized information. Here a combination of AFM and fluorescence microscopy is presented where features on a millimeter sized tissue sample are selected by fluorescence microscopy on the micrometer scale and then mapped down to nanometer precision by AFM under native conditions. This served us to show that local changes in the organization of fluorescent stained cells, a marker for early osteoarthritis, correlate with a significant local reduction of the elastic modulus, local thinning of the collagen fibers, and a roughening of the articular surface. This approach is not only relevant for cartilage, but in general for the characterization of native biological tissue from the macro- to the nanoscale. STATEMENT OF SIGNIFICANCE: Different length scales have to be studied to understand the function and dysfunction of hierarchically organized biomaterials or tissues. Here we combine a highly stable AFM with fluorescence microscopy and precisely motorized movement to correlate micro- and nanoscopic properties of articular cartilage on a millimeter sized sample under native conditions. This is necessary for unraveling the relationship between microscale organization of chondrocytes, micrometer scale changes in articular cartilage properties and nanoscale organization of collagen (including D-banding). We anticipate that such studies pave the way for a guided design of hierarchical biomaterials.


Assuntos
Cartilagem Articular , Osteoartrite , Condrócitos , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA