RESUMO
Dementia is a leading public health crisis that is projected to affect 152.8 million individuals by 2050, over half of whom will be living in the Western Pacific region. To determine the challenges and opportunities for capacity building in the region, this scoping review searched databases. Our findings reveal national and ethnoracial differences in the prevalence, literacy and genetic risk factors associated with dementia syndromes, underscoring the need to identify and mitigate relevant risk factors in this region. Importantly, â¼80% of research was derived from higher income countries, where the establishment of patient registries and biobanks reflect increased efforts and allocation of resources towards understanding the pathogenesis of dementia. We discuss the need for increased public awareness through culturally-relevant policies, the potential to support patients and caregivers through digital strategies and development of regional networks to mitigate the growing social impact and economic burden of dementia in this region. Funding: FightMND Mid-Career Fellowship, NHMRC EL1 Fellowship, NHMRC Practitioner Fellowship (1156093), NHMRC Postgraduate scholarship (2022387).
RESUMO
The rate and prevalence of hallucinations in behavioural variant frontotemporal dementia is well established. The mechanisms for underlying vulnerability however are the least well described in FTD compared with other neuropsychiatric conditions, despite the presence of these features significantly complicating the diagnostic process. As such, this present study aimed to provide a detailed characterization of the neural, cognitive and behavioural profile associated with a predisposition to hallucinatory experiences in behavioural variant frontotemporal dementia. In total, 153 patients with behavioural variant frontotemporal dementia were recruited sequentially for this study. A group of patients with well characterized hallucinations and good-quality volumetric MRI scans (n = 23) were genetically and demographically matched to a group without hallucinations (n = 23) and a healthy control cohort (n = 23). All patients were assessed at their initial visit by means of a detailed clinical interview, a comprehensive battery of neuropsychological tests and MRI. Data were analysed according to three levels: (i) the relationship between neural structures, cognition, behaviour and hallucinations in behavioural variant frontotemporal dementia; (ii) the impact of the C9orf72 expansion; and (iii) hallucination subtype on expression of hallucinations. Basic and complex attentional (including divided attention and working memory) and visual function measures differed between groups (all P < 0.001) with hallucinators demonstrating poorer performance, along with evidence of structural changes centred on the prefrontal cortex, caudate and cerebellum (corrected for False Discovery Rate at P < 0.05 with a cluster threshold of 100 contiguous voxels). Attentional processes were also implicated in C9orf72 carriers with hallucinations with structural changes selectively involving the thalamus. Patients with visual hallucinations in isolation showed a similar pattern with emphasis on cerebellar atrophy. Our findings provided novel insights that attentional and visual function subsystems and related distributed brain structures are implicated in the generation of hallucinations in behavioural variant frontotemporal dementia, that dissociate across C9orf72, sporadic behavioural variant frontotemporal dementia and for the visual subtype of hallucinations. This loading on attentional and working memory measures is in line with current mechanistic models of hallucinations that frequently suggest a failure of integration of cognitive and perceptual processes. We therefore propose a novel cognitive and neural model for hallucination predisposition in behavioural variant frontotemporal dementia that aligns with a transdiagnostic model for hallucinations across neurodegeneration and psychiatry.
RESUMO
Youth depression has been associated with heterogenous patterns of aberrant brain connectivity. To make sense of these divergent findings, we conducted a systematic review encompassing 19 resting-state fMRI seed-to-whole-brain studies (1400 participants, comprising 795 youths with major depression and 605 matched healthy controls). We incorporated separate meta-analyses of connectivity abnormalities across the levels of the most commonly seeded brain networks (default-mode and limbic networks) and, based on recent additions to the literature, an updated meta-analysis of amygdala dysconnectivity in youth depression. Our findings indicated broad and distributed findings at an anatomical level, which could not be captured by conventional meta-analyses in terms of spatial convergence. However, we were able to parse the complexity of region-to-region dysconnectivity by considering constituent regions as components of distributed canonical brain networks. This integration revealed dysconnectivity centred on central executive, default mode, salience, and limbic networks, converging with findings from the adult depression literature and suggesting similar neurobiological underpinnings of youth and adult depression.
RESUMO
BACKGROUND: Hypothalamic dysregulation plays an established role in eating abnormalities in behavioural variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS). Its contribution to cognitive and behavioural impairments, however, remains unexplored. METHODS: Correlation between hypothalamic subregion atrophy and cognitive and behavioural impairments was examined in a large sample of 211 participants (52 pure ALS, 42 mixed ALS-FTD, 59 bvFTD, and 58 age- and education- matched healthy controls). RESULTS: Graded variation in hypothalamic involvement but relative sparing of the inferior tuberal region was evident across all patient groups. Bilateral anterior inferior, anterior superior, and posterior hypothalamic subregions were selectively implicated in memory, fluency and processing speed impairments in addition to apathy and abnormal eating habits, taking into account disease duration, age, sex, total intracranial volume, and acquisition parameters (all p ≤ .001). CONCLUSIONS: These findings revealed that subdivisions of the hypothalamus are differentially affected in the ALS-FTD spectrum and contribute to canonical cognitive and behavioural disturbances beyond eating abnormalities. The anterior superior and superior tuberal subregions containing the paraventricular nucleus (housing oxytocin-producing neurons) displayed the greatest volume loss in bvFTD and ALS-FTD, and ALS, respectively. Importantly, the inferior tuberal subregion housing the arcuate nucleus (containing different groups of neuroendocrine neurons) was selectively preserved across the ALS-FTD spectrum, supporting pathophysiological findings of discrete neuropeptide expression abnormalities that may underlie the pathogenesis of autonomic and metabolic abnormalities and potentially certain cognitive and behavioural symptom manifestations, representing avenues for more refined symptomatic treatment targets.
Assuntos
Esclerose Lateral Amiotrófica , Apatia , Demência Frontotemporal , Humanos , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/patologia , Comportamento Alimentar , Hipotálamo/patologiaRESUMO
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of the same disease spectrum. While thalamic−cerebellar degeneration has been observed in C9orf72 expansion carriers, the exact subregions involved across the clinical phenotypes of the ALS−FTD spectrum remain unclear. Using MRIs from 58 bvFTD, 41 ALS−FTD and 52 ALS patients compared to 57 controls, we aimed to delineate thalamic and cerebellar subregional changes across the ALS−FTD spectrum and to contrast these profiles between cases with and without C9orf72 expansions. Thalamic involvement was evident across all ALS−FTD clinical phenotypes, with the laterodorsal nucleus commonly affected across all groups (values below the 2.5th control percentile). The mediodorsal nucleus was disproportionately affected in bvFTD and ALS−FTD but not in ALS. Cerebellar changes were only observed in bvFTD and ALS−FTD predominantly in the superior−posterior region. Comparison of genetic versus sporadic cases revealed significantly lower volumes exclusively in the pulvinar in C9orf72 expansion carriers compared to non-carriers, irrespective of clinical syndrome. Overall, bvFTD showed significant correlations between thalamic subregions, level of cognitive dysfunction and severity of behavioural symptoms. Notably, strong associations were evident between mediodorsal nucleus atrophy and severity of behavioural changes in C9orf72-bvFTD (r = −0.9, p < 0.0005). Our findings reveal distinct thalamic and cerebellar atrophy profiles across the ALS−FTD spectrum, with differential impacts on behaviour and cognition, and point to a unique contribution of C9orf72 expansions in the clinical profiles of these patients.
RESUMO
BACKGROUND: Psychiatric presentations similar to that observed in primary psychiatric disorders are well described across the amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) spectrum. Despite this, schizotypal personality traits associated with increased risks of clinical psychosis development and poor psychosocial outcomes have never been examined. The current study aimed to provide the first exploration of schizotypal traits and its neural underpinnings in the ALS-FTD spectrum to gain insights into a broader spectrum of psychiatric overlap with psychiatric disorders. METHODS: Schizotypal traits were assessed using the targeted Schizotypal Personality Questionnaire in 99 participants (35 behavioural variant FTD, 10 ALS-FTD and 37 ALS patients, and 17 age-, sex- and education-matched healthy controls). Voxel-based morphometry analysis of whole-brain grey matter volume was conducted. RESULTS: Relative to controls, pervasive schizotypal personality traits across positive and negative schizotypy and disorganised thought disorders were identified in behavioural variant FTD, ALS (with the exception of negative schizotypy) and ALS-FTDALS-FTD patients (all p < .013), suggesting the presence of a wide spectrum of subclinical schizotypal symptoms beyond classic psychotic symptoms. Atrophy in frontal, anterior cingulate and insular cortices, and caudate and thalamus was involved in positive schizotypy, while integrity of the cerebellum was associated with disorganised thought disorder traits. CONCLUSIONS: The frontal-striatal-limbic regions underpinning manifestation of schizotypy in the ALS-FTDALS-FTD spectrum are similar to that established in previous schizophrenia research. This finding expands the concept of a psychiatric overlap in ALS-FTD and schizophrenia, and suggests potentially common underlying mechanisms involving disruptions to frontal-striatal-limbic networks, warranting a transdiagnostic approach for future investigations.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Atrofia/complicações , Demência Frontotemporal/complicações , Demência Frontotemporal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , HumanosRESUMO
OBJECTIVE: Alterations in eating behaviour are one of the diagnostic features of behavioural variant frontotemporal dementia (bvFTD). It is hypothesised that underlying brain network disturbances and atrophy to key structures may affect macronutrient preference in bvFTD. We aimed to establish whether a preference for dietary fat exists in bvFTD, its association with cognitive symptoms and the underlying neural mechanisms driving these changes. METHODS: Using a test meal paradigm, adapted from the obesity literature, with variable fat content (low 20%, medium 40% and high 60%), preference for fat in 20 bvFTD was compared to 16 Alzheimer's disease (AD) and 13 control participants. MRI brain scans were analysed to determine the neural correlates of fat preference. RESULTS: Behavioural variant FTD patients preferred the high-fat meal compared to both AD (U = 61.5; p = 0.001) and controls (U = 41.5; p = 0.001), with 85% of bvFTD participants consistently rating the high-fat content meal as their preferred option. This increased preference for the high-fat meal was associated with total behavioural change (Cambridge Behavioural Inventory: rs = 0.462; p = 0.001), as well as overall functional decline (Frontotemporal Dementia Rating Scale: rs = -0.420; p = 0.03). A preference for high-fat content in bvFTD was associated with atrophy in an extended brain network including frontopolar, anterior cingulate, insular cortices, putamen and amygdala extending into lateral temporal, posteromedial parietal and occipital cortices. CONCLUSIONS: Increased preference for fat content is associated with many of the canonical features of bvFTD. These findings offer new insights into markers of disease progression and pathogenesis, providing potential treatment targets.
Assuntos
Doença de Alzheimer , Gorduras na Dieta , Preferências Alimentares/fisiologia , Demência Frontotemporal , Rede Nervosa/patologia , Obesidade , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Atrofia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Feminino , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Gravidade do Paciente , Putamen/diagnóstico por imagem , Putamen/patologiaRESUMO
The disease syndromes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) display considerable clinical, genetic and pathological overlap, yet mounting evidence indicates substantial differences in progression and survival. To date, there has been limited examination of how profiles of brain atrophy might differ between clinical phenotypes. Here, we address this longstanding gap in the literature by assessing cortical and subcortical grey and white matter volumes on structural MRI in a large cohort of 209 participants. Cognitive and behavioural changes were assessed using the Addenbrooke's Cognitive Examination and the Cambridge Behavioural Inventory. Relative to 58 controls, behavioural variant FTD (n = 58) and ALS-FTD (n = 41) patients displayed extensive atrophy of frontoinsular, cingulate, temporal and motor cortices, with marked subcortical atrophy targeting the hippocampus, amygdala, thalamus and striatum, with atrophy further extended to the brainstem, pons and cerebellum in the latter group. At the other end of the spectrum, pure-ALS patients (n = 52) displayed considerable frontoparietal atrophy, including right insular and motor cortices and pons and brainstem regions. Subcortical regions included the bilateral pallidum and putamen, but to a lesser degree than in the ALS-FTD and behavioural variant FTD groups. Across the spectrum the most affected region in all three groups was the insula, and specifically the anterior part (76-90% lower than controls). Direct comparison of the patient groups revealed disproportionate temporal atrophy and widespread subcortical involvement in ALS-FTD relative to pure-ALS. In contrast, pure-ALS displayed significantly greater parietal atrophy. Both behavioural variant FTD and ALS-FTD were characterized by volume decrease in the frontal lobes relative to pure-ALS. The motor cortex and insula emerged as differentiating structures between clinical syndromes, with bilateral motor cortex atrophy more pronounced in ALS-FTD compared with pure-ALS, and greater left motor cortex and insula atrophy relative to behavioural variant FTD. Taking a transdiagnostic approach, we found significant associations between abnormal behaviour and volume loss in a predominantly frontoinsular network involving the amygdala, striatum and thalamus. Our findings demonstrate the presence of distinct atrophy profiles across the ALS-FTD spectrum, with key structures including the motor cortex and insula. Notably, our results point to subcortical involvement in the origin of behavioural disturbances, potentially accounting for the marked phenotypic variability typically observed across the spectrum.
RESUMO
Objective: This study aimed to establish (1) the pattern and severity of neuropsychiatric symptoms and other non-motor symptoms of sleep and mood, across ALS phenotypes in comparison to bvFTD and (2) the contribution of non-modifiable factors including age, sex and disease state to the severity of symptoms experienced by ALS patients. Methods: Consecutive participants were recruited to the study and underwent a detailed clinical, cognitive, behavioral and neuroimaging assessment. Neuropsychiatric and other non-motor symptoms were determined using the Cambridge Behavioral Inventory, the CBI-R. The scores were converted to define impairment in terms of mild, moderate and severe symptoms for each subscale. Rate, severity and contribution of King's staging and modifiable factors were also determined and a regression model identified predictors of symptom severity. Results: In total, 250 participants (115 ALS, 98 bvFTD, and 37 ALS-FTD patients) were recruited. A similar pattern of neuropsychiatric symptom severity was identified (apathy, disinhibition and stereotypic behavior) for all behavioral phenotypes of ALS compared to bvFTD (all p > 0.05). Neuropsychiatric symptoms were also present in cases defined as ALSpure and the cognitive phenotype of ALS (ALSci) although they occurred less frequently and were at the milder end of the spectrum. Disordered sleep and disrupted mood were common across all phenotypes (all p < 0.05). The severity of sleep dysfunction was influenced by both sex and age (all p < 0.05). Neuropsychiatric symptoms, sleep and mood disorders were common early in the disease process and deteriorated in line with progression on the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R; all p < 0.05). Diagnostic phenotype, disease duration and global cognition scores were the strongest predictors of non-motor and neuropsychiatric impairments. Conclusion: The current findings reveal strikingly similar patterns of changes across the subgroups of ALS and bvFTD, supporting the concept of the ALS-FTD spectrum. The findings further highlight the impact of non-motor and neuropsychiatric symptoms in patients with ALS, that are often as severe as that seen in ALS-FTD and bvFTD. This study advances understanding across the ALS-FTD spectrum that may accelerate the early identification of patient needs, to ensure prompt recognition of symptoms and thereby to improve clinical awareness, patient care and management.
RESUMO
Mounting evidence suggests an association between cerebellar atrophy and cognitive impairment in the main frontotemporal dementia syndromes. In contrast, whether cerebellar atrophy is present in the motor syndromes associated with frontotemporal lobar degeneration (corticobasal syndrome and progressive supranuclear palsy) and the extent of its contribution to their cognitive profile remain poorly understood. The current study aimed to comprehensively chart profiles of cognitive impairment in relation to cerebellar atrophy in 49 dementia patients (corticobasal syndrome = 33; progressive supranuclear palsy = 16) compared to 33 age-, sex- and education-matched healthy controls. Relative to controls, corticobasal syndrome and progressive supranuclear palsy patients demonstrated characteristic cognitive impairment, spanning the majority of cognitive domains including attention and processing speed, language, working memory, and executive function with relative preservation of verbal and nonverbal memory. Voxel-based morphometry analysis revealed largely overlapping patterns of cerebellar atrophy in corticobasal syndrome and progressive supranuclear palsy relative to controls, primarily involving bilateral Crus II extending into adjacent lobules VIIb and VIIIa. After controlling for overall cerebral atrophy and disease duration, exploratory voxel-wise general linear model analysis revealed distinct cerebellar subregions differentially implicated across cognitive domains in each patient group. In corticobasal syndrome, reduction in grey matter intensity in the left Crus I was significantly correlated with executive dysfunction. In progressive supranuclear palsy, integrity of the vermis and adjacent right lobules I-IV was significantly associated with language performance. These results are consistent with the well-established role of Crus I in executive functions and provide further supporting evidence for vermal involvement in cognitive processing. The current study presents the first detailed exploration of the role of cerebellar atrophy in cognitive deficits in corticobasal syndrome and progressive supranuclear palsy, offering insights into the cerebellum's contribution to cognitive processing even in neurodegenerative syndromes characterized by motor impairment.
RESUMO
This study assessed the effect of interval duration on the direction and magnitude of changes in cortical excitability and inhibition when applying repeated blocks of intermittent theta burst stimulation (iTBS) over motor cortex. 15 participants received three different iTBS conditions on separate days: single iTBS; repeated iTBS with a 5 minute interval (iTBS-5-iTBS); and with a 15 minute interval (iTBS-15-iTBS). Changes in cortical excitability and short-interval cortical inhibition (SICI) were assessed via motor-evoked potentials (MEPs) before and up to 60 mins following stimulation. iTBS-15-iTBS increased MEP amplitude for up to 60 mins post stimulation, whereas iTBS-5-iTBS decreased MEP amplitude. In contrast, MEP amplitude was not altered by single iTBS. Despite the group level findings, only 53% of individuals showed facilitated MEPs following iTBS-15-iTBS, and only 40% inhibited MEPs following iTBS-5-iTBS. Modulation of SICI did not differ between conditions. These results suggest interval duration between spaced iTBS plays an important role in determining the direction of plasticity on excitatory, but not inhibitory circuits in human motor cortex. While repeated iTBS can increase the magnitude of MEP facilitation/inhibition in some individuals compared to single iTBS, the response to repeated iTBS appears variable between individuals in this small sample.