Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 210: 112972, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35219629

RESUMO

Information on the relative contributions of microplastics coming from different sources is important to help prioritise measures to reduce river contamination levels and limit human and ecological health risks. This paper reports on work which aimed to quantitatively assess the relative concentrations and types of microplastic delivered from differed sources to a second order river. The study was undertaken in a mixed landuse area within a rapidly urbanising catchment in Malaysia. Over a six-week period, water samples were collected from road culverts and drains in residential and industrial areas across the area to assess microplastic concentrations, while inputs from atmospheric deposition and wastewater treatment plants (WWTPs) were also quantified. Microplastic fibres and fragments were the dominant material in all sources, with the majority consisting of styrene-butadiene rubber and nylon. Culverts draining main roads were the main contributor to riverborne microplastic, delivering 42.20 ± 35.29 particles/L directly to the river channel. Road inputs were up to seven times greater than those from residential (8.53 ± 9.91 particles/L) and industrial (5.67 ± 4.88 particles/L) areas. The five WWTPs had removal efficiencies of between 30.95 ± 5.51% and 69.94 ± 22.17%, with their outflows delivering microplastics to the river in concentrations similar to those in uncontrolled residential and industrial drains. Atmospheric deposition across the study area was estimated to be 76.07 ± 32.85 particles/m2/day (=8.35 ± 5.11 particles/L). Mitigation strategies in the study area should focus on improving management of water draining roads, and re-routing discharges from domestic and industrial areas to WWTPs rather than allowing them to flow directly to the river. The low efficiencies of some of the WWTPs are not unusual, and indicate the need for additional water treatment to deal with microplastic present in wastewater.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Plásticos , Rios , Poluentes Químicos da Água/análise
2.
Biotechnol Appl Biochem ; 69(3): 906-919, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33826152

RESUMO

Despite a lot of intensive research on cell-scaffold interaction, the focus is mainly on the capacity of construct scaffolds to regulate cell mobility, migration, and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions have profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold are a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSC interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSC interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products.


Assuntos
Líquido Amniótico , Gelatina , Células Cultivadas , Celulose/análogos & derivados , Gelatina/farmacologia , Humanos , Células-Tronco , Alicerces Teciduais
3.
J Mater Sci Mater Med ; 30(6): 62, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127374

RESUMO

This study aimed to explore a potential use of fish scale-derived gelatin nanofibrous scaffolds (GNS) in tissue engineering due to their biological and economical merits. Extraction of gelatin was achieved via decalcification, sonication and lyophilization of mixed fish scales. To fabricate nano-scale architecture of scaffolds analogous to natural extracellular matrix, gelatin was rendered into nanofibrous matrices through 6-h electrospinning, resulting in the average diameter of 48 ± 12 nm. In order to improve the water-resistant ability while retaining their biocompatibility, GNS were physically crosslinked with ultraviolet (UV) irradiation for 5 min (UGN5), 10 min (UGN10) and 20 min (UGN20). On average, the diameter of nanofibers increased by 3 folds after crosslinking, however, Fourier transform infrared spectroscopy analysis confirmed that no major alterations occurred in the functional groups of gelatin. A degradation assay showed that UGN5 and UGN10 scaffolds remained in minimum essential medium for 14 days, while UGN20 scaffolds degraded completely after 10 days. All UGN scaffolds promoted adhesion and proliferation of human keratinocytes, HaCaT, without causing an apparent cytotoxicity. UGN5 scaffolds were shown to stimulate a better growth of HaCaT cells compared to other scaffolds upon 1 day of incubation, whereas UGN20 had a long-term effect on cells exhibiting 25% higher cell proliferation than positive control after 7 days. In the wound scratch assay, UGN5 scaffolds induced a rapid cell migration closing up to 79% of an artificial wound within 24 h. The current findings provide a new insight of UGN scaffolds to serve as wound dressings in the future. In the wound scratch assay, UGN5 induced a rapid cell migration closing up to 79% of an artificial wound within 24 h.


Assuntos
Escamas de Animais/química , Gelatina/química , Nanofibras/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Reagentes de Ligações Cruzadas/química , Eletroquímica , Matriz Extracelular , Fibroblastos/citologia , Peixes , Humanos , Queratinócitos/citologia , Teste de Materiais , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais , Raios Ultravioleta , Água/química , Cicatrização
4.
Polymers (Basel) ; 14(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956698

RESUMO

In recent years, composites consisting of polymers and cellulosic materials have attracted increasing research attention. Polypropylene (PP) is among the most common polymer types found in excavated waste from landfills. Moreover, wood waste generated from wood products manufacturing such as sawdust (SD) offers a good potential for the fabrication of composite materials, and it is readily available in the environment. In this paper, wood polymer composites (WPC) consisting of recycled PP (rPP) and (SD) were prepared and characterised. A range of mechanical properties, including tensile strength, flexural properties, creep and hardness were studied, along with morphology, thermal properties, water degradation and contact angle. The results showed that the mechanical and thermal properties of rPP increased with an increase in 40 wt% of the SD content. Furthermore, the SD content significantly influenced the water uptake of the composites. Time-temperature superposition (TTS) was applied to predict the long-term mechanical performance from short-term accelerated creep tests at a range of elevated temperatures. The short-term creep test showed efficient homogeneity between the fillers and matrix with increasing temperature. The produced wood polymer composites displayed a comparable physical property to virgin polymer and wood and could potentially be used for various structural materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA