Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Genet ; 13(8): e1006942, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806777

RESUMO

Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAßGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments.


Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Marcadores Genéticos , Células HCT116 , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
2.
Sci Rep ; 13(1): 18237, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880240

RESUMO

Norbin is an adaptor protein that binds numerous G protein-coupled receptors (GPCRs), is highly expressed in neurons, and is essential for a functioning nervous system in rodent models. Yet, beyond its control of neurite outgrowth and synaptic plasticity, few cellular roles of Norbin have been investigated to date. Furthermore, while Norbin is known to regulate the steady-state cell surface levels of several GPCRs, only in one case has the protein been shown to control the agonist-induced receptor internalisation which serves to attenuate GPCR signalling. Here, we generated a Norbin-deficient PC12 cell line which enabled us to study both the cellular functions of Norbin and its roles in GPCR trafficking and signalling. We show that Norbin limits cell size and spreading, and is required for the growth, viability and cell cycle progression of PC12 cells. We also found that Norbin regulates both the steady-state surface level and agonist-induced internalisation of the GPCR sphingosine-1-phosphate receptor 1 (S1PR1) in these cells, suggesting that its role in agonist-dependent GPCR trafficking is more widespread than previously appreciated. Finally, we show that Norbin limits the S1P-stimulated activation of Akt and p38 Mapk, and is required for the activation of Erk in PC12 cells. Together, our findings provide a better understanding of the cellular functions of Norbin and its control of GPCR trafficking.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Ratos , Ciclo Celular , Células PC12 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Esfingosina-1-Fosfato , Sobrevivência Celular/genética
3.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923452

RESUMO

Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic ß cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and ß-PIX were found to control the glucose-stimulated release of insulin by pancreatic ß cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.


Assuntos
Glucose/metabolismo , Homeostase , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Insulina/metabolismo , Modelos Biológicos , Fatores de Troca de Nucleotídeo Guanina Rho/química
4.
Cells ; 10(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572121

RESUMO

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.


Assuntos
Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/fisiologia , Neurônios/fisiologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Movimento Celular , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Lisofosfolipídeos/metabolismo , Neurônios/citologia , Células PC12 , Ratos , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Eur J Cancer ; 56: 69-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26820797

RESUMO

Studies to identify predictive biomarkers can be carried out in isogenic cancer cell lines, which enable interrogation of the effect of a specific mutation. We assessed the effects of four drugs, the PI3K-mammalian target of rapamycin inhibitor dactolisib, the PI3K inhibitor pictrelisib, and the MEK (MAPK/ERK Kinase) inhibitors PD 0325901 and selumetinib, in isogenic DLD1 parental, KRAS(+/-), KRAS(G13D/-), PIK3CA(+/-) and PIK3CA(E545K/-) colorectal carcinoma cell lines. Importantly, we found substantial differences in the growth of these cells and in their drug sensitivity depending on whether they were studied under 2D (standard tissue culture on plastic) or 3D (in vitro soft agar and in vivo xenograft) conditions. DLD1 KRAS(+/-) and DLD1 PIK3CA(+/-) cells were more sensitive to MEK inhibitors than parental, DLD1 KRAS(G13D/-) and DLD1 PIK3CA(E545K/-) cells under 2D conditions, whereas DLD1 KRAS(G13D/-) and DLD1 PIK3CA(E545K/-) xenografts were sensitive to 10 mg/kg daily ×14 PD 0325901 in vivo (p ≤ 0.02) but tumours derived from parental DLD1 cells were not. These findings indicate that KRAS and PIK3CA mutations can influence the response of DLD1 colorectal cancer cell lines to MEK and PI3K inhibitors, but that the effect is dependent on the experimental model used to assess drug sensitivity.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Neoplasias Colorretais/tratamento farmacológico , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA