Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biomacromolecules ; 25(1): 444-454, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38135668

RESUMO

Polyhydroxyalkanoates (PHAs), aliphatic polyesters synthesized by microorganisms, have gained considerable attention as biodegradable plastics. Recently, α-carbon-methylated PHAs have been shown to exhibit several interesting properties that differ from those of conventional PHAs, such as their crystallization behavior and material properties. This study investigated α-carbon methylated (S)- and (R)-3-hydroxy-2-methylpropionate (3H2MP) as new repeating units. 3H2MP units were homopolymerized or copolymerized with (R)-3-hydroxybutyrate (3HB) by manipulating the culture conditions of recombinant Escherichia coli LSBJ. Consequently, PHAs with 3H2MP units ranging from 5 to 100 mol % were synthesized by external addition of (R)- and (S)-enantiomers or the racemic form of 3H2MPNa. The (S)-3H2MP precursor supplemented into the culture medium was almost directly polymerized into PHA while maintaining its chirality. Therefore, a highly isotactic P(3H2MP) (R:S = 1:99) was synthesized, which displayed a melting temperature of 114-119 °C and a relatively high enthalpy of fusion (68 J/g). In contrast, in cultures supplemented with (R)-3H2MP, the precursor was racemized and polymerized into PHA, resulting in the synthesis of the amorphous polymer atactic P(3H2MP) (R:S = 40:60). However, racemization was not observed at a low concentration of the (R)-3H2MP precursor, thereby synthesizing P(3HB-co-8 mol % 3H2MP) with 100% (R)-3H2MP units. The thermogravimetric analysis revealed that the thermal degradation temperatures at 5% weight loss of P(3H2MP)s occurred at approximately 313 °C, independent of tacticity, which is substantially higher than that of P(3HB) (257 °C). This study demonstrates a new concept for controlling the physical properties of biosynthesized PHA by manipulating the polymers' tacticity using 3H2MP units.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Poliésteres/metabolismo , Hidroxibutiratos , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Carbono/metabolismo
2.
Appl Environ Microbiol ; 89(11): e0148823, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37855636

RESUMO

IMPORTANCE: Polyhydroxyalkanoate (PHA) is a highly biodegradable microbial polyester, even in marine environments. In this study, we incorporated an enrichment culture-like approach in the process of isolating marine PHA-degrading bacteria. The resulting 91 isolates were suggested to fall into five genera (Alloalcanivorax, Alteromonas, Arenicella, Microbacterium, and Pseudoalteromonas) based on 16S rRNA analysis, including two novel genera (Arenicella and Microbacterium) as marine PHA-degrading bacteria. Microbacterium schleiferi (DSM 20489) and Alteromonas macleodii (NBRC 102226), the type strains closest to the several isolates, have an extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase homolog that does not fit a marine-type domain composition. However, A. macleodii exhibited no PHA degradation ability, unlike M. schleiferi. This result demonstrates that the isolated Alteromonas spp. are different species from A. macleodii. P(3HB) depolymerase homologs in the genus Alteromonas should be scrutinized in the future, particularly about which ones work as the depolymerase.


Assuntos
Poli-Hidroxialcanoatos , Pseudoalteromonas , Poli-Hidroxialcanoatos/metabolismo , RNA Ribossômico 16S/genética , Baías , Água do Mar , Pseudoalteromonas/genética
3.
Biotechnol Lett ; 42(9): 1655-1662, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32240453

RESUMO

OBJECTIVES: To autotrophically produce polyhydroxyalkanoate (PHA) by Ralstonia eutropha without the risk of gas explosion, the feasibility of using a non-combustible gas mixture with low hydrogen content was investigated. RESULTS: A non-combustible gas mixture (H2: O2: CO2: N2 = 3.6: 7.6: 12.3: 76.5) was used for a 144-hour flask cultivation of two R. eutropha strains. Initially, using strain H16, the production conditions for poly(3-hydroxybutyrate) [P(3HB)] were explored by examining nutrient deficiency. Of these, a nitrogen source-deficient culture medium yielded the highest polymer content of 70 wt% in cells. Next, to produce PHA copolymer, the recombinant strain 1F2 was cultured under the nitrogen source-deficient autotrophic condition. As a result, the accumulation of 3HB-based copolymer containing of 1.2 mol% 3-hydroxyvalerate unit and 1.2 mol% 3-hydroxy-4-methylvalerate unit was observed with 57 wt% of the cell content. CONCLUSIONS: The use of a non-combustible gas with low hydrogen content is beneficial for PHA production in eliminating the risk of explosion due to hydrogen leakage.


Assuntos
Dióxido de Carbono/metabolismo , Cupriavidus necator , Hidrogênio/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Processos Autotróficos , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Engenharia Metabólica
4.
Appl Microbiol Biotechnol ; 102(18): 7927-7934, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30032431

RESUMO

Poly(3-hydroxydodecanoate) [P(3HDD)], a medium-chain-length polyhydroxyalkanoate (PHA), is expected to be used as a novel type of bioplastic characterized by a soft and transparent nature. In this study, to achieve a high yield of P(3HDD), PHA synthase was modified through random mutagenesis of a region of the PHA synthase 1 gene from Pseudomonas putida KT2440 (phaC1Pp). Screening of the mutant library using a ß-oxidation-deficient Escherichia coli LSBJ was performed. As a result, four mutants, designated w10, w14, w309, and w311, were selected from 10,000 mutants. The w311 mutant had two amino acid replacements (E358G and N398S), and showed the highest production of P(3HDD) with increased polymer molecular weights when compared to the native enzyme. Saturation mutagenesis at the N398 position, which was found to be highly conserved among Pseudomonas PhaCs, revealed that amino acids with hydrophobic and smaller residues either retained or increased P(3HDD) production. This study demonstrates the benefit of using the PHA synthase mutants to enhance the production of P(3HDD).


Assuntos
Aciltransferases/genética , Proteínas de Bactérias/genética , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas/enzimologia , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Engenharia Metabólica , Mutagênese , Pseudomonas/genética , Pseudomonas/metabolismo
5.
Biosci Biotechnol Biochem ; 82(9): 1615-1623, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29804521

RESUMO

Medium-chain-length (mcl)-polyhydroxyalkanoates (PHAs), elastomeric polyesters synthesized by Genus Pseudomonas bacteria, generally have many different monomer components. In this study, PHAs biosynthesized by four type strains of Pseudomonas (P. putida, P. citronellolis, P. oleovorans, and P. pseudoalcaligenes) and a typical PHA producer (P. putida KT2440) were characterized in terms of the monomer structure and composition by gas chromatography-mass spectrometry (GC-MS) analysis. With a thiomethyl pretreatment of PHA methanolysis derivatives, two unsaturated monomers, 3-hydroxy-5-dodecenoate (3H5DD) and 3-hydroxy-5-tetradecenoate (3H5TD), were identified in mcl-PHAs produced by P. putida and P. citronellolis. The quantitative analysis of PHA monomers was performed by employing GC-MS with methanolysis derivatives, and the results coincided with those obtained by performing nuclear magnetic resonance spectroscopy. Only poly(3-hydroxybutyrate) was detected from the P. oleovorans and P. pseudoalcaligenes type strains. These analytical results would be useful as a reference standard for phenotyping of new PHA-producing bacteria.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas/metabolismo , Espectroscopia de Ressonância Magnética , Metano/metabolismo , Pseudomonas/classificação , Padrões de Referência , Especificidade da Espécie
6.
Biosci Biotechnol Biochem ; 81(8): 1627-1635, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28532241

RESUMO

Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJYB4) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJYB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJYB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJYB4, which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJYB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.


Assuntos
Família Multigênica , Acil Coenzima A/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Bacillus cereus/enzimologia , Bacillus cereus/genética , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Butírico/metabolismo , Caproatos/metabolismo , Clonagem Molecular , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glucose/metabolismo , Ácidos Pentanoicos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Proteínas Recombinantes , Especificidade da Espécie , Especificidade por Substrato
7.
Biosci Biotechnol Biochem ; 81(1): 194-196, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27609142

RESUMO

Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.


Assuntos
Aciltransferases/genética , Bacillus/enzimologia , Bacillus/genética , Bacillus/classificação , Clonagem Molecular , Bases de Dados Genéticas , Expressão Gênica , Filogenia
8.
Appl Microbiol Biotechnol ; 100(10): 4413-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26728018

RESUMO

The binding preference of a polyhydroxyalkanoate (PHA) biosynthesis-related multifunctional protein from Ralstonia eutropha (PhaMRe) was characterized. In vitro activity assay showed that PHA synthase from R. eutropha (PhaCRe) was activated by the presence of PhaMRe but PHA synthase from Aeromonas caviae (PhaCAc) was not. Additionally, in vitro assays of protein-protein interactions demonstrated that PhaMRe interacted with PhaCRe directly, but did not interact with PhaCAc. These results suggest that the protein-protein interaction is important for the activation of PhaC by PhaMRe. Further analyses indicated that PhaMRe has little or no direct interaction with the PHA polymer chain. Subsequently, PHA biosynthesis genes (phaA Re, phaB Re, and phaC Re/phaC Ac) and the phaM Re gene were introduced into recombinant Escherichia coli and cultivated for PHA accumulation. Contrary to our expectations, the expression of PhaMRe decreased PHA accumulation and changed the morphology of PHA granules to be microscopically obscure shape in PhaCRe-expressing E. coli. No change in the amount of P(3HB) or the morphology of granules by PhaMRe expression was observed in PhaCAc-expressing E. coli. These observations suggest that PhaMRe affects cellular physiology through the PhaM-PhaC interaction.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cupriavidus necator/genética , Poli-Hidroxialcanoatos/biossíntese , Aciltransferases/genética , Aeromonas caviae/genética , Aeromonas caviae/metabolismo , Proteínas de Bactérias/genética , Cupriavidus necator/metabolismo , Escherichia coli/genética , Plasmídeos/genética , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Bacteriol ; 197(8): 1350-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645560

RESUMO

Recombinant Ralstonia eutropha strain PHB(-)4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB(-)4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB(-)4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone.


Assuntos
Cupriavidus necator/metabolismo , Genoma Bacteriano , Valeratos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cupriavidus necator/genética , Dosagem de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Leucina/química , Leucina/metabolismo , Valina/genética , Valina/metabolismo
10.
Appl Environ Microbiol ; 81(23): 8076-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386053

RESUMO

(R)-Specific enoyl-coenzyme A (enoyl-CoA) hydratases (PhaJs) are capable of supplying monomers from fatty acid ß-oxidation to polyhydroxyalkanoate (PHA) biosynthesis. PhaJ1Pp from Pseudomonas putida showed broader substrate specificity than did PhaJ1Pa from Pseudomonas aeruginosa, despite sharing 67% amino acid sequence identity. In this study, the substrate specificity characteristics of two Pseudomonas PhaJ1 enzymes were investigated by site-directed mutagenesis, chimeragenesis, X-ray crystallographic analysis, and homology modeling. In PhaJ1Pp, the replacement of valine with isoleucine at position 72 resulted in an increased preference for enoyl-coenzyme A (CoA) elements with shorter chain lengths. Conversely, at the same position in PhaJ1Pa, the replacement of isoleucine with valine resulted in an increased preference for enoyl-CoAs with longer chain lengths. These changes suggest a narrowing and broadening in the substrate specificity range of the PhaJ1Pp and PhaJ1Pa mutants, respectively. However, the substrate specificity remains broader in PhaJ1Pp than in PhaJ1Pa. Additionally, three chimeric PhaJ1 enzymes, composed from PhaJ1Pp and PhaJ1Pa, all showed significant hydratase activity, and their substrate preferences were within the range exhibited by the parental PhaJ1 enzymes. The crystal structure of PhaJ1Pa was determined at a resolution of 1.7 Å, and subsequent homology modeling of PhaJ1Pp revealed that in the acyl-chain binding pocket, the amino acid at position 72 was the only difference between the two structures. These results indicate that the chain-length specificity of PhaJ1 is determined mainly by the bulkiness of the amino acid residue at position 72, but that other factors, such as structural fluctuations, also affect specificity.


Assuntos
Proteínas de Bactérias/metabolismo , Enoil-CoA Hidratase/metabolismo , Pseudomonas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/genética , Mutagênese Sítio-Dirigida , Pseudomonas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Appl Microbiol Biotechnol ; 99(15): 6231-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26135986

RESUMO

This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.


Assuntos
Aciltransferases/metabolismo , Bacillus cereus/enzimologia , Bacillus cereus/metabolismo , Bacillus megaterium/enzimologia , Bacillus megaterium/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Aciltransferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Appl Microbiol Biotechnol ; 99(11): 4701-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25503319

RESUMO

Polyhydroxyalkanoate (PHA) synthase from Bacillus cereus YB-4 (PhaRCYB4) catalyzes not only PHA polymerization but also alcoholytic cleavage of PHA chains. The alcoholysis activity of PhaRCYB4 is expressed when a hydroxyacyl-CoA monomer is absent but an alcohol compound is present. In this study, we performed alanine mutagenesis of the putative catalytic triad (Cys(151), Asp(306), and His(335)) in the PhaCYB4 subunit to identify the active site residues for polymerization and alcoholysis activities. Individual substitution of each triad residue with alanine resulted in loss of both polymerization and alcoholysis activities, suggesting that these residues are commonly shared between polymerization and alcoholysis reactions. The loss of activity was also observed following mutagenesis of the triad to other amino acids, except for one PhaRCYB4 mutant with a C151S substitution, which lost polymerization activity but still possessed cleavage activity towards PHA chains. The low-molecular-weight PHA isolated from the PhaRCYB4(C151S)-expressing strain showed a lower ratio of alcohol capping at the P(3HB) carboxy terminus than did that from the wild-type-expressing strain. This observation implies that hydrolysis activity of PhaRCYB4 might be elicited by the C151S mutation.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Bacillus cereus/enzimologia , Domínio Catalítico , Substituição de Aminoácidos , Análise Mutacional de DNA , Polimerização
13.
Appl Environ Microbiol ; 80(9): 2867-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24584238

RESUMO

In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc.


Assuntos
Aciltransferases/metabolismo , Aeromonas/enzimologia , Proteínas de Bactérias/metabolismo , Cupriavidus necator/enzimologia , Ativadores de Enzimas/metabolismo , Lectinas de Plantas/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aeromonas/química , Aeromonas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cupriavidus necator/química , Cupriavidus necator/genética , Ativação Enzimática , Ativadores de Enzimas/química , Cinética , Lectinas de Plantas/química , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo
14.
Appl Environ Microbiol ; 80(4): 1421-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334666

RESUMO

Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature.


Assuntos
Aciltransferases/metabolismo , Bacillus cereus/enzimologia , Escherichia coli/metabolismo , Etanol/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Aciltransferases/genética , Bacillus cereus/genética , Bacillus megaterium/enzimologia , Escherichia coli/genética , Hidrólise , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Bioengineering (Basel) ; 11(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38790321

RESUMO

Ralstonia eutropha strain H16 is a chemoautotrophic bacterium that oxidizes hydrogen and accumulates poly[(R)-3-hydroxybutyrate] [P(3HB)], a prominent polyhydroxyalkanoate (PHA), within its cell. R. eutropha utilizes fructose or CO2 as its sole carbon source for this process. A PHA-negative mutant of strain H16, known as R. eutropha strain PHB-4, cannot produce PHA. Strain 1F2, derived from strain PHB-4, is a leucine analog-resistant mutant. Remarkably, the recombinant 1F2 strain exhibits the capacity to synthesize 3HB-based PHA copolymers containing 3-hydroxyvalerate (3HV) and 3-hydroxy-4-methyvalerate (3H4MV) comonomer units from fructose or CO2. This ability is conferred by the expression of a broad substrate-specific PHA synthase and tolerance to feedback inhibition of branched amino acids. However, the total amount of comonomer units incorporated into PHA was up to around 5 mol%. In this study, strain 1F2 underwent genetic engineering to augment the comonomer supply incorporated into PHA. This enhancement involved several modifications, including the additional expression of the broad substrate-specific 3-ketothiolase gene (bktB), the heterologous expression of the 2-ketoacid decarboxylase gene (kivd), and the phenylacetaldehyde dehydrogenase gene (padA). Furthermore, the genome of strain 1F2 was altered through the deletion of the 3-hydroxyacyl-CoA dehydrogenase gene (hbdH). The introduction of bktB-kivd-padA resulted in increased 3HV incorporation, reaching 13.9 mol% from fructose and 6.4 mol% from CO2. Additionally, the hbdH deletion resulted in the production of PHA copolymers containing (S)-3-hydroxy-2-methylpropionate (3H2MP). Interestingly, hbdH deletion increased the weight-average molecular weight of the PHA to over 3.0 × 106 on fructose. Thus, it demonstrates the positive effects of hbdH deletion on the copolymer composition and molecular weight of PHA.

16.
Appl Environ Microbiol ; 79(6): 1948-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23335776

RESUMO

The type I polyhydroxyalkanoate synthase from Cupriavidus necator was heterologously expressed in Escherichia coli with simultaneous overexpression of chaperone proteins. Compared to expression of synthase alone (14.55 mg liter(-1)), coexpression with chaperones resulted in the production of larger total quantities of enzyme, including a larger proportion in the soluble fraction. The largest increase was seen when the GroEL/GroES system was coexpressed, resulting in approximately 6-fold-greater enzyme yields (82.37 mg liter(-1)) than in the absence of coexpressed chaperones. The specific activity of the purified enzyme was unaffected by coexpression with chaperones. Therefore, the increase in yield was attributed to an enhanced soluble fraction of synthase. Chaperones were also coexpressed with a polyhydroxyalkanoate production operon, resulting in the production of polymers with generally reduced molecular weights. This suggests a potential use for chaperones to control the physical properties of the polymer.


Assuntos
Aciltransferases/biossíntese , Proteínas de Bactérias/biossíntese , Chaperoninas/biossíntese , Cupriavidus necator/enzimologia , Escherichia coli/genética , Expressão Gênica , Aciltransferases/genética , Proteínas de Bactérias/genética , Chaperoninas/genética , Cupriavidus necator/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
17.
Appl Environ Microbiol ; 79(12): 3813-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584780

RESUMO

Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaC(Cs)) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaC(Cs) for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C(4) and C(5)) or MCL (C(6)) substrates substantiates the fundamental classification of PHA synthases.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Chromobacterium/enzimologia , Poli-Hidroxialcanoatos/biossíntese , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato
18.
Appl Microbiol Biotechnol ; 97(3): 1175-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22543354

RESUMO

The polyhydroxyalkanoate synthase of Ralstonia eutropha (PhaC(Re)) shows a lag time for the start of its polymerization reaction, which complicates kinetic analysis of PhaC(Re). In this study, we found that the lag can be virtually eliminated by addition of 50 mg/L TritonX-100 detergent into the reaction mixture, as well as addition of 2.5 g/L Hecameg detergent as previously reported by Gerngross and Martin (Proc Natl Sci USA 92: 6279-6283, 1995). TritonX-100 is an effective lag eliminator working at much lower concentration than Hecameg. Kinetic analysis of PhaC(Re) was conducted in the presence of TritonX-100, and PhaC(Re) obeyed Michaelis-Menten kinetics for (R)-3-hydroxybutyryl-CoA substrate. In inhibitory assays using various compounds such as adenosine derivatives and CoA derivatives, CoA free acid showed competitive inhibition but other compounds including 3'-dephospho CoA had no inhibitory effect. Furthermore, PhaC(Re) showed a considerably reduced reaction rate for 3'-dephospho (R)-3-hydroxybutyryl CoA substrate and did not follow typical Michaelis-Menten kinetics. These results suggest that the 3'-phosphate group of CoA plays a critical role in substrate recognition by PhaC(Re).


Assuntos
Aciltransferases/metabolismo , Cupriavidus necator/enzimologia , Coenzima A/metabolismo , Ativação Enzimática , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Cinética , Octoxinol/metabolismo , Especificidade por Substrato
19.
Appl Microbiol Biotechnol ; 97(11): 4821-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23474615

RESUMO

A polyhydroxyalkanoate (PHA) was enzymatically synthesized in vitro, and the end structure of PHA associated with a chain transfer (CT) reaction was investigated. In the CT reaction, PHA chain transfers from PHA synthase (PhaC) to a CT agent, resulting in covalent bonding of CT agent to the PHA chain at its carboxyl end. In vitro CT reaction has never been demonstrated because of relatively low yields of in vitro synthesized poly[(R)-3-hydroxybutyrate)] (P(3HB)), which makes it difficult to characterize the end structures of the polymers by nuclear magnetic resonance (NMR). To overcome these difficulties, a novel in vitro synthesis method that produced relatively larger amounts of P(3HB) was developed by employing PhaCDa from Delftia acidovorans and two enantioselective enoyl-coenzyme A (CoA) hydratases which were R-hydratase (PhaJAc) from Aeromonas caviae and S-hydratase (FadB1x) from Pseudomonas putida KT2440 with ß-butyrolactone and CoA as starting materials. Using this method, P(3HB) synthesis was performed with tetraethylene glycols (TEGs) as a discriminable CT agent, and the resultant P(3HB) was characterized by (1)H-NMR. NMR analysis revealed that the carboxylic end of P(3HB) was covalently linked to TEGs, providing the first direct evidence of in vitro CT reaction.


Assuntos
Aciltransferases/metabolismo , Aeromonas caviae/enzimologia , Delftia acidovorans/enzimologia , Enoil-CoA Hidratase/metabolismo , Polietilenoglicóis/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/enzimologia , Aciltransferases/isolamento & purificação , Enoil-CoA Hidratase/isolamento & purificação , Polimerização
20.
Appl Microbiol Biotechnol ; 97(8): 3441-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22801709

RESUMO

Class I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (PhaCRe) was engineered so as to acquire an unusual lactate (LA)-polymerizing activity. To achieve this, the site-directed saturation mutagenesis of PhaCRe was conducted at position 510, which corresponds to position 481 in the initially discovered class II LA-polymerizing PHA synthase (PhaC1PsSTQK), a mutation in which (Gln481Lys) was shown to be essential to its LA-polymerizing activity (Taguchi et al., Proc Natl Acad Sci USA 105(45):17323-17327, 2008). The LA-polymerizing activity of the PhaCReA510X mutants was evaluated based on the incorporation of LA units into the P[3-hydroxybutyrate(3HB)] backbone in vivo using recombinant Escherichia coli LS5218. Among 19 PhaCRe(A510X) mutants, 15 synthesized P (LA-co-3HB), indicating that the 510 residue plays a critical role in LA polymerization. The polymer synthesized by PhaCReA510S was fractionated using gel permeation chromatography in order to remove the low molecular weight fractions. The (13)C and (1)H NMR analyses of the high molecular weight fraction revealed that the polymer was a P(7 mol% LA-co-3HB) copolymer with a weight-averaged molecular weight of 3.2 × 10(5) Da. Interestingly, the polymer contained an unexpectedly high ratio of an LA-LA -LA triad sequence, suggesting that the polymer synthesized by PhaCRe mutant may not be a random copolymer, but presumably had a block sequence.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Cupriavidus necator/enzimologia , Ácido Láctico/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Engenharia de Proteínas , Substituição de Aminoácidos , Cupriavidus necator/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Peso Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA