Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7994): 287-292, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200298

RESUMO

Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.

2.
Chemistry ; 30(10): e202302837, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38010242

RESUMO

Machine learning has permeated all fields of research, including chemistry, and is now an integral part of the design of novel compounds with desired properties. In the field of asymmetric catalysis, the preference still lies with models based on a physical understanding of the catalysis phenomenon and the electronic and steric properties of catalysts. However, such models require quantum chemical calculations and are thus limited by their computational cost. Here, we highlight the recent advances in modeling catalyst selectivity by using the 2D structures of catalysts and substrates. While these have a less explicit mechanistic connection to the modeled property, 2D descriptors, such as topological indices, molecular fingerprints, and fragments, offer the tremendous advantages of low cost and high speed of calculations. This makes them optimal for the in-silico screening of large amounts of data. We provide an overview of common quantitative structure-property relationship workflow, model building and validation techniques, applications of these methodologies in asymmetric catalysis design, and an outlook on improving the understanding of 2D-based models.

3.
J Am Chem Soc ; 145(16): 8788-8793, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043821

RESUMO

Despite recent advancements in the development of catalytic asymmetric electrophile induced lactonization reactions of olefinic carboxylic acids, the archetypical hydrolactonization has long remained an unsolved and well-recognized challenge. Here, we report the realization of a catalytic asymmetric hydrolactonization using a confined imidodiphosphorimidate (IDPi) Brønsted acid catalyst. The method is operationally simple, scalable, and compatible with a wide variety of substrates. Its potential is showcased with concise syntheses of the sesquiterpenes (-)-boivinianin A and (+)-gossonorol. Through in-depth physicochemical and DFT analyses, we derive a nuanced picture of the mechanism and enantioselectivity of this reaction.

4.
J Am Chem Soc ; 145(9): 4994-5000, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826435

RESUMO

Chiral organosilanes do not exist in nature and are therefore absent from the "chiral pool". As a consequence, synthetic approaches toward enantiopure silanes, stereogenic at silicon, are rather limited. While catalytic asymmetric desymmetrization reactions of symmetric organosilicon compounds have been developed, the utilization of racemic silanes in a dynamic kinetic asymmetric transformation (DYKAT) or dynamic kinetic resolution (DKR) would significantly expand the breadth of accessible Si-stereogenic compounds. We now report a DYKAT of racemic allyl silanes enabled by strong and confined imidodiphosphorimidate (IDPi) catalysts, providing access to Si-stereogenic silyl ethers. The products of this reaction are easily converted into useful enantiopure monohydrosilanes. We propose a spectroscopically and experimentally supported mechanism involving the epimerization of a catalyst-bound intermediate.

5.
Angew Chem Int Ed Engl ; 62(11): e202218659, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688354

RESUMO

Catalyst optimization processes typically rely on inductive and qualitative assumptions of chemists based on screening data. While machine learning models using molecular properties or calculated 3D structures enable quantitative data evaluation, costly quantum chemical calculations are often required. In contrast, readily available binary fingerprint descriptors are time- and cost-efficient, but their predictive performance remains insufficient. Here, we describe a machine learning model based on fragment descriptors, which are fine-tuned for asymmetric catalysis and represent cyclic or polyaromatic hydrocarbons, enabling robust and efficient virtual screening. Using training data with only moderate selectivities, we designed theoretically and validated experimentally new catalysts showing higher selectivities in a challenging asymmetric tetrahydropyran synthesis.

6.
J Am Chem Soc ; 144(23): 10156-10161, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649270

RESUMO

Functionalized enantiopure organosilanes are important building blocks with applications in various fields of chemistry; nevertheless, asymmetric synthetic methods for their preparation are rare. Here we report the first organocatalytic enantioselective synthesis of tertiary silyl ethers possessing "central chirality" on silicon. The reaction proceeds via a desymmetrizing carbon-carbon bond forming silicon-hydrogen exchange reaction of symmetrical bis(methallyl)silanes with phenols using newly developed imidodiphosphorimidate (IDPi) catalysts. A variety of enantiopure silyl ethers was obtained in high yields with good chemo- and enantioselectivities and could be readily derivatized to several useful chiral silicon compounds, leveraging the olefin functionality and the leaving group nature of the phenoxy substituent.


Assuntos
Éteres , Carbono , Éteres/síntese química , Silício , Estereoisomerismo
7.
J Am Chem Soc ; 143(2): 675-680, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33399449

RESUMO

In recent years, several organocatalytic asymmetric hydroarylations of activated, electron-poor olefins with activated, electron-rich arenes have been described. In contrast, only a few approaches that can handle unactivated, electronically neutral olefins have been reported and invariably require transition metal catalysts. Here we show how an efficient and highly enantioselective catalytic asymmetric intramolecular hydroarylation of aliphatic and aromatic olefins with indoles can be realized using strong and confined IDPi Brønsted acid catalysts. This unprecedented transformation is enabled by tertiary carbocation formation and establishes quaternary stereogenic centers in excellent enantioselectivity and with a broad substrate scope that includes an aliphatic iodide, an azide, and an alkyl boronate, which can be further elaborated into bioactive molecules.

8.
J Am Chem Soc ; 143(36): 14475-14481, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34436899

RESUMO

Protected aldols (i.e., true aldols derived from aldehydes) with either syn- or anti- stereochemistry are versatile intermediates in many oligopropionate syntheses. Traditional stereoselective approaches to such aldols typically require several nonstrategic operations. Here we report two highly enantioselective and diastereoselective catalytic Mukaiyama aldol reactions of the TBS- or TES- enolsilanes of propionaldehyde with aromatic aldehydes. Our reactions directly deliver valuable silyl protected propionaldehyde aldols in a catalyst controlled manner, either as syn- or anti- isomer. We have identified a privileged IDPi catalyst motif that is tailored for controlling these aldolizations with exceptional selectivities. We demonstrate how a single atom modification in the inner core of the IDPi catalyst, replacing a CF3-group with a CF2H-group, leads to a dramatic switch in enantiofacial differentiation of the aldehyde. The origin of this remarkable effect was attributed to tightening of the catalytic cavity via unconventional C-H hydrogen bonding of the CF2H group.

9.
J Am Chem Soc ; 138(44): 14740-14749, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27779872

RESUMO

The heterodimerizing self-assembly between a phosphoric acid catalyst and a carboxylic acid has recently been established as a new activation mode in Brønsted acid catalysis. In this article, we present a comprehensive mechanistic investigation on this activation principle, which eventually led to its elucidation. Detailed studies are reported, including computational investigations on the supramolecular heterodimer, kinetic studies on the catalytic cycle, and a thorough analysis of transition states by DFT calculations for the rationalization of the catalyst structure-selectivity relationship. On the basis of these investigations, we developed a kinetic resolution of racemic epoxides, which proceeds with high selectivity (up to s = 93), giving the unreacted epoxides and the corresponding protected 1,2-diols in high enantiopurity. Moreover, this approach could be advanced to an unprecedented stereodivergent resolution of racemic α-chiral carboxylic acids, thus providing access to a variety of enantiopure nonsteroidal anti-inflammatory drugs and to α-amino acid derivatives.

10.
Plant Cell Physiol ; 56(5): 875-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25634964

RESUMO

Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed.


Assuntos
Hordeum/fisiologia , Pressão Osmótica , Raízes de Plantas/fisiologia , Salinidade , Estresse Fisiológico , Água/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Hordeum/efeitos dos fármacos , Soluções Hipertônicas/farmacologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
11.
Org Biomol Chem ; 12(40): 7919-22, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25216237

RESUMO

A facile and catalytic asymmetric synthesis of the pentacyclic core of (-)-nakadomarin A, containing all the stereogenic centers of the natural product was achieved. The key intermediate involves the oxazolidine moiety as an iminium cation equivalent. An efficient method for the removal of the N-hydroxyethyl group is also described.


Assuntos
Carbolinas/síntese química , Iminas/química , Compostos Organometálicos/química , Oxazóis/química , Paládio/química , Carbolinas/química , Catálise , Cátions/química , Conformação Molecular , Estereoisomerismo
12.
J Plant Res ; 127(6): 787-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193635

RESUMO

Previous reports indicate that salt stress reduces the root hydraulic conductance and the expression of plasmamembrane-type aquaporins (PIPs). As a molecular mechanism for this phenomenon, the present study found evidence that the osmotic component, but probably not an ion-specific component, decreases PIP transcripts. Eight of ten PIP transcripts were reduced to less than half by 360 mM mannitol treatment for 12 h in comparison with control samples. A large decrease of HvPIP2;1 protein was also recorded. This reduction of both transcripts and proteins of HvPIP2s should be physiologically effective for preventing or reducing dehydration at an initial phase of severe salt/osmotic stress. Root cell sap osmolality increased from 278 to 372 mOsm 24 h after 360 mM mannitol treatment. These steps can secure survival and growth recovery with water reabsorption in barley. Our data also suggest that H2O2 seems not to be the main cause of osmotic stress-induced transcriptional down-regulation within the concentrations (20-500 µM) and time periods (24 h) examined, although H2O2 was previously proposed to be involved in the mechanisms of salinity/osmotic tolerance.


Assuntos
Aquaporinas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Pressão Osmótica , Proteínas de Plantas/genética , Cloreto de Sódio/metabolismo , Aquaporinas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Água/metabolismo
13.
Nat Commun ; 15(1): 5846, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992000

RESUMO

A strong and confined Brønsted acid catalyzed enantioselective cyclization of bis(methallyl)silanes provides enantioenriched Si-stereogenic silacycles. High enantioselectivities of up to 96.5:3.5 er were obtained for a range of bis(methallyl)silanes. NMR and ESI-MS studies reveal that the formation of a covalent adduct irreversibly inhibits turnover. Remarkably, we found that acetic acid as an additive promotes the collapse of this adduct, enabling full turnover. Experimental investigation and density functional theory (DFT) calculations were conducted to elucidate the origin of this phenomenon and the observed enantioselectivity.

14.
Science ; 359(6383): 1501-1505, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29599238

RESUMO

The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Brønsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Brønsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Brønsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. The methodology gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (-)-Boivinianin A.

15.
Org Lett ; 17(12): 3000-3, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26020103

RESUMO

The combined use of a halogen bond (XB) donor with trimethylsilyl halide was found to be an efficient cocatalytic system for the direct dehydroxylative coupling reaction of alcohol with various nucleophiles, such as allyltrimethylsilane and trimethylcyanide, to give the corresponding adduct in moderate to excellent yields. Detailed control experiments and mechanistic studies revealed that the XB interaction was crucial for the reaction. The application of this coupling reaction is also described.


Assuntos
Álcoois/química , Halogênios/química , Compostos de Organossilício/química , Compostos de Organossilício/síntese química , Compostos de Trimetilsilil/química , Compostos de Trimetilsilil/síntese química , Ligação de Hidrogênio , Estrutura Molecular
16.
Chem Commun (Camb) ; 50(89): 13691-4, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25247612

RESUMO

Neutral electrophilic iodine(I) species proved to be efficient reagents for C-X bond cleavage of various cyclic and acyclic α-silyloxyhalides, and the induced desilylative semipinacol rearrangement provided the corresponding ketones in good yields. The reaction is operationally simple, and proceeds under mild conditions with good functional group compatibility. Mechanistic investigations, including computational studies, were also performed.


Assuntos
Brometos/química , Cloretos/química , Compostos de Iodo/química , Cicloexenos/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA