Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells Dev ; 29(2): 63-74, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31801412

RESUMO

Recently, cell therapy has been developed as a novel treatment for perinatal hypoxic-ischemic encephalopathy (HIE), which is an important cause of neurological disorder and death, and stem cells from human exfoliated deciduous teeth (SHED) express early markers for mesenchymal and neuroectodermal stem cells. We investigated the treatment effect of SHED for HIE in neonatal rats. Seven-day-old rats underwent ligation of the left carotid artery and were exposed to 8% hypoxic treatment. SHED (1 × 105 cells) were injected via the right external jugular vein 24 h after the insult. The effect of intravenous administration of SHED cells was evaluated neurologically and pathophysiologically. In the evaluation of engraftment using quantum dots 655, only a few SHED were detected in the injured cortex. In the immunohistological evaluation 24 h after injection, the numbers of positive cells of active caspase-3 and anti-4 hydroxynonenal antiserum were lower in the SHED group than in the vehicle group. The number of Iba-1+ cells in the cortex was higher in the SHED group. However, the proportion of M1 microglia (Iba-1+/ED-1+) was significantly decreased, whereas M2 microglia (Iba-1+/CD206+) tended to increase in the SHED group. In the behavioral tests performed 5 months after hypoxic treatment, compared to the vehicle group, the SHED group showed significant elongation of the endurance time in the rotarod treadmill test, significantly ameliorated proportion of using the impaired hand in the cylinder test, significantly lower ratio of right/left front paw area in gait analysis, and significantly higher avoidance rate in the active avoidance test. In the in vitro experiment with cultured neurons exposed to oxygen-glucose deprivation, we confirmed the neuroprotective effect of the condition medium of SHED. These results suggested that intravenous administration of SHED exerted a treatment effect both histologically and functionally, possibly via a paracrine effect.


Assuntos
Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Dente Decíduo/citologia , Administração Intravenosa , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/fisiologia , Células Cultivadas , Criança , Modelos Animais de Doenças , Humanos , Hipóxia-Isquemia Encefálica/fisiopatologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Atividade Motora/fisiologia , Ratos Wistar , Transplante Heterólogo/métodos , Resultado do Tratamento
2.
Nat Commun ; 10(1): 4262, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537808

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by an expanded CAG repeat in the androgen receptor (AR) gene. Here, we perform a comprehensive analysis of signaling pathways in a mouse model of SBMA (AR-97Q mice) utilizing a phosphoprotein assay. We measure the levels of 17 phosphorylated proteins in spinal cord and skeletal muscle of AR-97Q mice at three stages. The level of phosphorylated Src (p-Src) is markedly increased in the spinal cords and skeletal muscles of AR-97Q mice prior to the onset. Intraperitoneal administration of a Src kinase inhibitor improves the behavioral and histopathological phenotypes of the transgenic mice. We identify p130Cas as an effector molecule of Src and show that the phosphorylated p130Cas is elevated in murine and cellular models of SBMA. These results suggest that Src kinase inhibition is a potential therapy for SBMA.


Assuntos
Atrofia Bulboespinal Ligada ao X/patologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores Androgênicos/genética , Medula Espinal/metabolismo , Quinases da Família src/antagonistas & inibidores , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/terapia , Linhagem Celular , Proteína Substrato Associada a Crk/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA