Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pediatr Res ; 83(4): 889-896, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29278642

RESUMO

BackgroundUntreated phenylketonuria (PKU), one of the most common human genetic disorders, usually results in mental retardation. Although a protein-restricted artificial diet can prevent retardation, dietary compliance in adults is often poor. In pregnant PKU women, noncompliance can result in maternal PKU syndrome, where high phenylalanine (Phe) levels cause severe fetal complications. Enzyme substitution therapy using Phe ammonia lyase (PAL) corrects PKU in BTBR Phe hydroxylase (Pahenu2) mutant mice, suggesting a potential for maternal PKU syndrome treatment in humans.MethodsWe reviewed clinical data to assess maternal PKU syndrome incidence in pregnant PKU women. We treated female PKU mice (on normal diet) with PAL, stabilizing Phe at physiological levels, and mated them to assess pregnancy outcomes.ResultsPatient records show that, unfortunately, the efficacy of diet to prevent maternal PKU syndrome has not significantly improved since the problem was first noted 40 years ago. PAL treatment of pregnant PKU mice shows that offspring of PAL-treated dams survive to adulthood, in contrast to the complete lethality seen in untreated mice, or limited survival seen in mice on a PKU diet.ConclusionPAL treatment reduced maternal PKU syndrome severity in mice and may have potential for human PKU therapy.


Assuntos
Modelos Animais de Doenças , Fenilalanina Hidroxilase/genética , Fenilcetonúria Materna/genética , Fenilcetonúria Materna/fisiopatologia , Adulto , Amônia-Liases/genética , Animais , Dieta com Restrição de Proteínas , Feminino , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Camundongos , Camundongos Mutantes , Fenilcetonúria Materna/dietoterapia , Polietilenoglicóis/metabolismo , Gravidez , Resultado da Gravidez , Prenhez , Estudos Retrospectivos
2.
J Pharmacol Exp Ther ; 360(2): 313-323, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27856936

RESUMO

Pompe disease is a rare neuromuscular disorder caused by an acid α-glucosidase (GAA) deficiency resulting in glycogen accumulation in muscle, leading to myopathy and respiratory weakness. Reveglucosidase alfa (BMN 701) is an insulin-like growth factor 2-tagged recombinant human acid GAA (rhGAA) that enhances rhGAA cellular uptake via a glycosylation-independent insulin-like growth factor 2 binding region of the cation-independent mannose-6-phosphate receptor (CI-MPR). The studies presented here evaluated the effects of Reveglucosidase alfa treatment on glycogen clearance in muscle relative to rhGAA, as well as changes in respiratory function and glycogen clearance in respiratory-related tissue in a Pompe mouse model (GAAtm1Rabn/J). In a comparison of glycogen clearance in muscle with Reveglucosidase alfa and rhGAA, Reveglucosidase alfa was more effective than rhGAA with 2.8-4.7 lower EC50 values, probably owing to increased cellular uptake. The effect of weekly intravenous administration of Reveglucosidase alfa on respiratory function was monitored in Pompe and wild-type mice using whole body plethysmography. Over 12 weeks of 20-mg/kg Reveglucosidase alfa treatment in Pompe mice, peak inspiratory flow (PIF) and peak expiratory flow (PEF) stabilized with no compensation in respiratory rate and inspiratory time during hypercapnic and recovery conditions compared with vehicle-treated Pompe mice. Dose-related decreases in glycogen levels in both ambulatory and respiratory muscles generally correlated to changes in respiratory function. Improvement of murine PIF and PEF were similar in magnitude to increases in maximal inspiratory and expiratory pressure observed clinically in late onset Pompe patients treated with Reveglucosidase alfa (Byrne et al., manuscript in preparation).


Assuntos
Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes/farmacologia , Respiração/efeitos dos fármacos , alfa-Glucosidases/farmacologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Fatores de Tempo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/farmacocinética , alfa-Glucosidases/uso terapêutico
3.
Mol Genet Metab ; 122(1-2): 33-35, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28506393

RESUMO

Pegylated recombinant phenylalanine ammonia lyase (pegvaliase) is an enzyme substitution therapy being evaluated for the treatment of phenylketonuria (PKU). PKU is characterized by elevated plasma phenylalanine, which is thought to lead to a deficiency in monoamine neurotransmitters and ultimately, neurocognitive dysfunction. A natural history evaluation in a mouse model of PKU demonstrated a profound decrease in tyrosine hydroxylase (TH) immunoreactivity in several brain regions, beginning at 4weeks of age. Following treatment with pegvaliase, the number of TH positive neurons was increased in several brain regions compared to placebo treated ENU2 mice.


Assuntos
Fenilalanina Amônia-Liase/uso terapêutico , Fenilcetonúrias/complicações , Fenilcetonúrias/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Neurotransmissores/administração & dosagem , Neurotransmissores/genética , Neurotransmissores/uso terapêutico , Fenilalanina/sangue , Fenilalanina Amônia-Liase/administração & dosagem , Fenilalanina Amônia-Liase/genética , Fenilcetonúrias/patologia , Fenilcetonúrias/fisiopatologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Tirosina 3-Mono-Oxigenase/imunologia , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Am J Hum Genet ; 91(6): 1108-14, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23200862

RESUMO

Achondroplasia (ACH), the most common form of dwarfism, is an inherited autosomal-dominant chondrodysplasia caused by a gain-of-function mutation in fibroblast-growth-factor-receptor 3 (FGFR3). C-type natriuretic peptide (CNP) antagonizes FGFR3 downstream signaling by inhibiting the pathway of mitogen-activated protein kinase (MAPK). Here, we report the pharmacological activity of a 39 amino acid CNP analog (BMN 111) with an extended plasma half-life due to its resistance to neutral-endopeptidase (NEP) digestion. In ACH human growth-plate chondrocytes, we demonstrated a decrease in the phosphorylation of extracellular-signal-regulated kinases 1 and 2, confirming that this CNP analog inhibits fibroblast-growth-factor-mediated MAPK activation. Concomitantly, we analyzed the phenotype of Fgfr3(Y367C/+) mice and showed the presence of ACH-related clinical features in this mouse model. We found that in Fgfr3(Y367C/+) mice, treatment with this CNP analog led to a significant recovery of bone growth. We observed an increase in the axial and appendicular skeleton lengths, and improvements in dwarfism-related clinical features included flattening of the skull, reduced crossbite, straightening of the tibias and femurs, and correction of the growth-plate defect. Thus, our results provide the proof of concept that BMN 111, a NEP-resistant CNP analog, might benefit individuals with ACH and hypochondroplasia.


Assuntos
Acondroplasia/tratamento farmacológico , Peptídeo Natriurético Tipo C/análogos & derivados , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Acondroplasia/diagnóstico , Acondroplasia/genética , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Modelos Animais de Doenças , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Humanos , Camundongos , Mutação , Peptídeo Natriurético Tipo C/química , Peptídeo Natriurético Tipo C/fisiologia , Peptídeo Natriurético Tipo C/uso terapêutico , Tamanho do Órgão/efeitos dos fármacos , Radiografia , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Crânio/patologia , Resultado do Tratamento
5.
Mol Genet Metab ; 114(2): 281-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25257657

RESUMO

The CLN2 form of neuronal ceroid lipofuscinosis, a type of Batten disease, is a lysosomal storage disorder caused by a deficiency of the enzyme tripeptidyl peptidase-1 (TPP1). Patients exhibit progressive neurodegeneration and loss of motor, cognitive, and visual functions, leading to death by the early teenage years. TPP1-null Dachshunds recapitulate human CLN2 disease. To characterize the safety and pharmacology of recombinant human (rh) TPP1 administration to the cerebrospinal fluid (CSF) as a potential enzyme replacement therapy (ERT) for CLN2 disease, TPP1-null and wild-type (WT) Dachshunds were given repeated intracerebroventricular (ICV) infusions and the pharmacokinetic (PK) profile, central nervous system (CNS) distribution, and safety were evaluated. TPP1-null animals and WT controls received 4 or 16mg of rhTPP1 or artificial cerebrospinal fluid (aCSF) vehicle every other week. Elevated CSF TPP1 concentrations were observed for 2-3 days after the first ICV infusion and were approximately 1000-fold higher than plasma levels at the same time points. Anti-rhTPP1 antibodies were detected in CSF and plasma after repeat rhTPP1 administration, with titers generally higher in TPP1-null than in WT animals. Widespread brain distribution of rhTPP1 was observed after chronic administration. Expected histological changes were present due to the CNS delivery catheters and were similar in rhTPP1 and vehicle-treated animals, regardless of genotype. Neuropathological evaluation demonstrated the clearance of lysosomal storage, preservation of neuronal morphology, and reduction in brain inflammation with treatment. This study demonstrates the favorable safety and pharmacology profile of rhTPP1 ERT administered directly to the CNS and supports clinical evaluation in patients with CLN2 disease.


Assuntos
Aminopeptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Serina Proteases/administração & dosagem , Aminopeptidases/efeitos adversos , Aminopeptidases/imunologia , Aminopeptidases/farmacocinética , Animais , Anticorpos/sangue , Anticorpos/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/ultraestrutura , Dipeptidil Peptidases e Tripeptidil Peptidases/efeitos adversos , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacocinética , Progressão da Doença , Cães , Avaliação Pré-Clínica de Medicamentos , Genótipo , Infusões Intraventriculares , Lipofuscinoses Ceroides Neuronais/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Serina Proteases/efeitos adversos , Serina Proteases/imunologia , Serina Proteases/farmacocinética , Tripeptidil-Peptidase 1
6.
Toxicol Pathol ; 43(7): 959-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239651

RESUMO

PEGylation (the covalent binding of one or more polyethylene glycol molecules to another molecule) is a technology frequently used to improve the half-life and other pharmaceutical or pharmacological properties of proteins, peptides, and aptamers. To date, 11 PEGylated biopharmaceuticals have been approved and there is indication that many more are in nonclinical or clinical development. Adverse effects seen with those in toxicology studies are mostly related to the active part of the drug molecule and not to polyethylene glycol (PEG). In 5 of the 11 approved and 10 of the 17 PEGylated biopharmaceuticals in a 2013 industry survey presented here, cellular vacuolation is histologically observed in toxicology studies in certain organs and tissues. No other effects attributed to PEG alone have been reported. Importantly, vacuolation, which occurs mainly in phagocytes, has not been linked with changes in organ function in these toxicology studies. This article was authored through collaborative efforts of industry toxicologists/nonclinical scientists to address the nonclinical safety of large PEG molecules (>10 kilo Dalton) in PEGylated biopharmaceuticals. The impact of the PEG molecule on overall nonclinical safety assessments of PEGylated biopharmaceuticals is discussed, and toxicological information from a 2013 industry survey on PEGylated biopharmaceuticals under development is summarized. Results will contribute to the database of toxicological information publicly available for PEG and PEGylated biopharmaceuticals.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Polietilenoglicóis/toxicidade , Animais , Humanos , Polietilenoglicóis/química
7.
Toxicol Appl Pharmacol ; 277(1): 49-57, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24642058

RESUMO

CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3-14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS.


Assuntos
Aminopeptidases/uso terapêutico , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Terapia de Reposição de Enzimas/métodos , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Serina Proteases/uso terapêutico , Aminopeptidases/administração & dosagem , Aminopeptidases/efeitos adversos , Aminopeptidases/farmacocinética , Animais , Líquido Cefalorraquidiano/citologia , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/efeitos adversos , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacocinética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Haplorrinos , Infusões Intraventriculares , Injeções Espinhais , Contagem de Leucócitos , Proteínas Recombinantes , Serina Proteases/administração & dosagem , Serina Proteases/efeitos adversos , Serina Proteases/farmacocinética , Tripeptidil-Peptidase 1
8.
Mol Genet Metab ; 104(3): 325-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21784683

RESUMO

Late infantile neuronal ceroid lipofuscinosis (LINCL) is caused by mutations in the gene encoding tripeptidyl-peptidase 1 (TPP1). LINCL patients accumulate lysosomal storage materials in the CNS accompanied by neurodegeneration, blindness, and functional decline. Dachshunds homozygous for a null mutation in the TPP1 gene recapitulate many symptoms of the human disease. The objectives of this study were to determine whether intrathecal (IT) TPP1 treatment attenuates storage accumulation and functional decline in TPP1-/- Dachshunds and to characterize the CNS distribution of TPP1 activity. TPP1 was administered to one TPP1-/- and one homozygous wild-type (WT) dog. An additional TPP1-/- and WT dog received vehicle. Four IT administrations of 32 mg TPP1 formulated in 2.3 mL of artificial cerebrospinal fluid (aCSF) or vehicle were administered monthly via the cerebellomedullary cistern from four to seven months of age. Functional decline was assessed by physical and neurological examinations, electrophysiology, and T-maze performance. Neural tissues were collected 48 h after the fourth administration and analyzed for TPP1 activity and autofluorescent storage material. TPP1 was distributed at greater than WT levels in many areas of the CNS of the TPP1-/- dog administered TPP1. The amount of autofluorescent storage was decreased in this dog relative to the vehicle-treated affected control. No improvement in overall function was observed in this dog compared to the vehicle-treated TPP1-/- littermate control. These results demonstrate for the first time in a large animal model of LINCL widespread delivery of biochemically active TPP1 to the brain after IT administration along with a decrease in lysosomal storage material. Further studies with this model will be necessary to optimize the dosing route and regimen to attenuate functional decline.


Assuntos
Aminopeptidases/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacologia , Lisossomos/metabolismo , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/metabolismo , Serina Proteases/farmacologia , Aminopeptidases/administração & dosagem , Aminopeptidases/sangue , Aminopeptidases/genética , Aminopeptidases/uso terapêutico , Animais , Células CHO , Sistema Nervoso Central/metabolismo , Cromatografia em Gel , Cromatografia por Troca Iônica , Cricetinae , Cricetulus , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/sangue , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Cães , Eletrofisiologia , Fluorescência , Técnicas de Inativação de Genes , Humanos , Imunoensaio , Imunoglobulina E/sangue , Injeções Espinhais , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Serina Proteases/administração & dosagem , Serina Proteases/sangue , Serina Proteases/genética , Serina Proteases/uso terapêutico , Tripeptidil-Peptidase 1
9.
Mol Ther Methods Clin Dev ; 13: 440-452, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31193016

RESUMO

Adeno-associated virus (AAV)-based vectors are widely used for gene therapy, but the effect of pre-existing antibodies resulting from exposure to wild-type AAV is unclear. In addition, other poorly defined plasma factors could inhibit AAV vector transduction where antibodies are not detected. To better define the relationship between various forms of pre-existing AAV immunity and gene transfer, we studied valoctocogene roxaparvovec (BMN 270) in cynomolgus monkeys with varying pre-dose levels of neutralizing anti-AAV antibodies and non-antibody transduction inhibitors. BMN 270 is an AAV5-based vector for treating hemophilia A that encodes human B domain-deleted factor VIII (FVIII-SQ). After infusion of BMN 270 (6.0 × 1013 vg/kg) into animals with pre-existing anti-AAV5 antibodies, there was a mean decrease in maximal FVIII-SQ plasma concentration (Cmax) and AUC of 74.8% and 66.9%, respectively, compared with non-immune control animals, and vector genomes in the liver were reduced. In contrast, animals with only non-antibody transduction inhibitors showed FVIII-SQ plasma concentrations and liver vector copies comparable with those of controls. These results demonstrate that animals without AAV5 antibodies are likely responders to AAV5 gene therapy, regardless of other inhibiting plasma factors. The biological threshold for tolerable AAV5 antibody levels varied between individual animals and should be evaluated further in clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA