Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 23(47): 475711, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23117414

RESUMO

The structure, composition and photocatalytic activity of TiO(2) nanoparticles annealed in various gas atmospheres (N(2), NH(3) and H(2)) were studied in this work. The effect of treatment on crystal structure, particle size, chemical composition and optical absorbance were assessed by means of x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy and diffuse optical reflectance/transmittance measurements, respectively. Photocatalytic properties of the materials were evaluated by three different methods: degradation of methyl orange in water, killing of Staphylococcus aureus bacteria and photogeneration of radicals in the presence of 3-carboxy-2,2,5,5-tetramethyl pyrrolidine-1-oxyl (PCA) marker molecules. The results indicate that the correlation between pretreatment and the photocatalytic performance depends on the photocatalytic processes and cannot be generalized.


Assuntos
Antibacterianos/química , Nanopartículas/química , Titânio/química , Antibacterianos/farmacologia , Compostos Azo/química , Catálise , Radicais Livres/química , Gases/química , Humanos , Nanopartículas/ultraestrutura , Fotólise , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia
2.
Adv Drug Deliv Rev ; 180: 114037, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752842

RESUMO

This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.


Assuntos
Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas , Fotoquimioterapia , Dermatopatias Bacterianas/tratamento farmacológico , Antibacterianos/química , Humanos
3.
Biophys Rev ; 14(4): 1005-1022, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36042751

RESUMO

Optical clearing of the lung tissue aims to make it more transparent to light by minimizing light scattering, thus allowing reconstruction of the three-dimensional structure of the tissue with a much better resolution. This is of great importance for monitoring of viral infection impact on the alveolar structure of the tissue and oxygen transport. Optical clearing agents (OCAs) can provide not only lesser light scattering of tissue components but also may influence the molecular transport function of the alveolar membrane. Air-filled lungs present significant challenges for optical imaging including optical coherence tomography (OCT), confocal and two-photon microscopy, and Raman spectroscopy, because of the large refractive-index mismatch between alveoli walls and the enclosed air-filled region. During OCT imaging, the light is strongly backscattered at each air-tissue interface, such that image reconstruction is typically limited to a single alveolus. At the same time, the filling of these cavities with an OCA, to which water (physiological solution) can also be attributed since its refractive index is much higher than that of air will lead to much better tissue optical transmittance. This review presents general principles and advances in the field of tissue optical clearing (TOC) technology, OCA delivery mechanisms in lung tissue, studies of the impact of microbial and viral infections on tissue response, and antimicrobial and antiviral photodynamic therapies using methylene blue (MB) and indocyanine green (ICG) dyes as photosensitizers.

4.
J Mater Chem B ; 2(10): 1307-1316, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261445

RESUMO

Further developments of antibacterial coatings based on photocatalytic nanomaterials could be a promising route towards potential environmentally friendly applications in households, public buildings and health care facilities. Hereby we describe a simple chemical approach to synthesize photocatalytic nanomaterial-embedded coatings using gypsum as a binder. Various types of TiO2 nanofiber-based photocatalytic materials (nitrogen-doped and/or palladium nanoparticle decorated) and their composites with gypsum were characterized by means of scanning (SEM) and transmission (TEM) electron microscopy as well as electron and X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques. These gypsum-based composites can be directly applied as commercially available paints on indoor walls. Herein we report that surfaces coated with photocatalytic composites exhibit excellent antimicrobial properties by killing both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under blue light. In the case of MSSA cells, the palladium nanoparticle-decorated and nitrogen-doped TiO2 composites demonstrated the highest antimicrobial activity. For the MRSA strain even pure gypsum samples were proven to be efficient in eradicating Gram-positive human pathogens. The cytotoxicity of freestanding TiO2 nanofibers was revealed by analyzing the viability of HeLa cells using MTT and fluorescent cell assays.

5.
J Biophotonics ; 6(4): 338-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22736550

RESUMO

We fabricated composite nanoparticles consisting of a plasmonic core (gold nanorods or gold-silver nanocages) and a hematoporphyrin-doped silica shell. The dual photodynamic and photothermal activities of such nanoparticles against Staphylococcus aureus 209 P were studied and compared with the activities of reference solutions (hematoporphyrin or silica-coated plasmonic nanoparticles). Bacteria were incubated with nanocomposites or with the reference solutions for 15 min, which was followed by CW light irradiation with a few exposures of 5 to 30 min. To stimulate the photodynamic and photothermal activities of the nanocomposites, we used LEDs (405 and 625 nm) and a NIR laser (808 nm), respectively. We observed enhanced inactivation of S. aureus 209 P by nanocomposites in comparison with the reference solutions. By using fluorescence microscopy and spectroscopy, we explain the enhanced antimicrobial effect of hematoporphyrin-doped nanocomposites by their selective accumulation in the vicinity of the bacteria.


Assuntos
Hematoporfirinas/química , Luz , Viabilidade Microbiana/efeitos da radiação , Nanocompostos/química , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Ouro/química , Nanopartículas Metálicas/química , Fenômenos Ópticos , Fármacos Fotossensibilizantes/química , Porosidade , Dióxido de Silício/química , Prata/química , Staphylococcus aureus/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA