Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Electron Agric ; 129: 15-26, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32287575

RESUMO

Bovine respiratory disease (BRD) complex in calves impairs health and welfare and causes severe economic losses for the Stockperson. Early recognition of BRD should lead to earlier veterinary (antibiotic/anti-inflammatory) treatment interventions thereby reducing the severity of the disease and associated costs. Coughing is one of the clinical manifestations of BRD. It is believed that by automatically and continuously monitoring the sounds within calf houses, and analysing the coughing frequency, early recognition of BRD in calves is possible. Therefore, the objective of the present study was to develop an automated calf cough monitor and examine its potential as an early warning system for BRD in artificially reared dairy calves. The coughing sounds of 62 calves were continuously recorded by a microphone over a three-month period. A sound analysis algorithm was developed to distinguish calf coughs from other sounds (e.g. mechanical sounds). During the sound recording period the health of the calves was assessed and scored periodically per week by a trained human observer. Calves presenting with BRD received antibiotic and/or anti-inflammatory treatment and the dates of treatment were recorded. This treatment date reference served as a comparison for the investigation of whether an increase in coughing frequency could be related to calves developing BRD. The calf cough detection algorithm achieved 50.3% sensitivity, 99.2% specificity and 87.5% precision. Four out of five periods, where coughing frequency was observed to be increased, coincided with the development of BRD in more than one calf. This period of increased coughing frequency was always observed before the calves were treated. Therefore, the calf cough monitor has the potential to identify early onset of BRD in calves.

2.
Sci Total Environ ; 650(Pt 2): 2751-2760, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373053

RESUMO

This paper reviews the environmental impact of current livestock practices and discusses the advantages offered by Precision Livestock Farming (PLF), as a potential strategy to mitigate environmental risks. PLF is defined as: "the application of process engineering principles and techniques to livestock farming to automatically monitor, model and manage animal production". The primary goal of PLF is to make livestock farming more economically, socially and environmentally sustainable and this can be obtained through the observation, interpretation of behaviours and, if possible, individual control of animals. Furthermore, adopting PLF to support management strategies, may lead to the reduction of the environmental impact of farms. Currently, few studies reported PLF efficacy in reducing the environmental impact, however further studies are necessary to better analyze the actual potential of PLF as a mitigation strategy. Literature shows the potentiality of the application of PLF, as the introduction of PLF in farms can lead to a reduction of Greenhouse gases (GHG) and ammonia (NH3) emission in air, nitrates and antibiotics pollution in water bodies, phosphorus, antibiotics and heavy metals in the soil.


Assuntos
Criação de Animais Domésticos/métodos , Meio Ambiente , Poluição Ambiental/prevenção & controle , Gado , Animais
3.
Animals (Basel) ; 9(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717823

RESUMO

Currently, lying behavior can be assessed using continuous observations from sensors (e.g., accelerometers). The analysis of digital data deriving from accelerometers is an effective tool for studying livestock behaviors. Despite the large interest in the lying behavior of dairy cows, no reference was found in literature regarding the prediction of lying behavior as a function of the interaction of environmental parameters. The present study aimed to evaluate the influence of climatic conditions (temperature-humidity index, solar radiation, air velocity and rainfalls) on the lying behavior of a group of primiparous dairy cows, using data from accelerometers, and develop a prediction model to identify and predict the lying behavior of dairy cows as a function of the effects of environmental conditions. Results from the. GLM Procedure (SAS) showed that the model was highly significant (p < 0.001) and the r2 was 0.84. All of the effects in the model resulted in being highly significant (p < 0.001). This model, if validated properly, could be a valid early warning system to identify any deviation from the expected behavior, and to assess the effectiveness of thermal stress mitigation strategies.

4.
Animals (Basel) ; 9(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925674

RESUMO

Management systems in modern dairy farms is an important issue in relation to animal comfort and welfare. The objective of this study was to determine the effect of feed delivery frequency on the behavior patterns, visits to an automatic milking system (AMS) and on milk production of lactating dairy cows. The study was conducted on a commercial dairy farm with automatic feeding and milking systems. Feeding treatments consisted of two different frequencies, high feed delivery frequency (11 deliveries per day) and low feed delivery frequency (six deliveries per day). Lying behavior of 20 dairy cows was electronically monitored. The results obtained showed that 11 deliveries per day feed delivery frequency decreases the number of long-duration lying bouts, which may indicate that a very high feeding frequency disturbs the cows during their resting periods and thus influences both animal comfort and milk production. High feeding frequency may disturb the duration of lying bouts and alter the pattern of lying behavior throughout the day, affecting mainly the lying time during the 60 min before and following the provision of fresh feed. Delivering feed at a low frequency allow cows to distribute more evenly their lying time over the course of the day and improve their utilization of an AMS.

5.
Front Vet Sci ; 5: 329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687721

RESUMO

Features of intensive farming can seriously threaten pig homeostasis, well-being and productivity. Disease tolerance of an organism is the adaptive ability in preserving homeostasis and at the same time limiting the detrimental impact that infection can inflict on its health and performance without affecting pathogen burden per se. While disease resistance (DRs) can be assessed measuring appropriately the pathogen burden within the host, the tolerance cannot be quantified easily. Indeed, it requires the assessment of the changes in performance as well as the changes in pathogen burden. In this paper, special attention is given to criteria required to standardize methodologies for assessing disease tolerance (DT) in respect of infectious diseases in pigs. The concept is applied to different areas of expertise and specific examples are given. The basic physiological mechanisms of DT are reviewed. Disease tolerance pathways, genetics of the tolerance-related traits, stress and disease tolerance, and role of metabolic stress in DT are described. In addition, methodologies based on monitoring of growth and reproductive performance, welfare, emotional affective states, sickness behavior for assessment of disease tolerance, and methodologies based on the relationship between environmental challenges and disease tolerance are considered. Automated Precision Livestock Farming technologies available for monitoring performance, health and welfare-related measures in pig farms, and their limitations regarding DT in pigs are also presented. Since defining standardized methodologies for assessing DT is a serious challenge for biologists, animal scientists and veterinarians, this work should contribute to improvement of health, welfare and production in pigs.

6.
Poult Sci ; 96(11): 3938-3943, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050436

RESUMO

The pattern of body weight gain during the commercial growing of broiler chickens is important to understand growth and feed conversion ratio of each flock.The application of sound analysis techniques has been widely studied to measure and analyze the amplitude and frequency of animal sounds. Previous studies have shown a significant correlation (P ≤ 0.001) between the frequency of vocalization and the age and weight of broilers. Therefore, the aim of this study was to identify and validate a model that describes the growth rate of broiler chickens based on the peak frequency of their vocalizations and to explore the possibility to develop a tool capable of automatically detecting the growth of the chickens based on the frequency of their vocalizations during the production cycle. It is part of an overall goal to develop a Precision Livestock Farming tool that assists farmers in monitoring the growth of broiler chickens during the production cycle. In the present study, sounds and body weight were continuously recorded in an intensive broiler farm during 5 production cycles. For each cycle the peak frequencies of the chicken vocalizations were used to estimate the weight and then they were compared with the observed weight of the birds automatically measured using on farm automated weighing devices. No significant difference is shown between expected and observed weights along the entire production cycles; this trend was confirmed by the correlation coefficient between expected and observed weights (r = 96%, P value ≤ 0.001).The identified model used to predict the weight as a function of the peak frequency confirmed that bird weight might be predicted by the frequency analysis of the sounds emitted at farm level. Even if the precision of the weighing method based on sounds investigated in this study has to be improved, it gives a reasonable indication regarding the growth of broilers opening a new scenario in monitoring systems in broiler houses.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/crescimento & desenvolvimento , Vocalização Animal , Aumento de Peso , Animais , Galinhas/fisiologia , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA