Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(2): e53801, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472244

RESUMO

Adult neural progenitor cells (aNPCs) ensure lifelong neurogenesis in the mammalian hippocampus. Proper regulation of aNPC fate has thus important implications for brain plasticity and healthy aging. Piwi proteins and the small noncoding RNAs interacting with them (piRNAs) have been proposed to control memory and anxiety, but the mechanism remains elusive. Here, we show that Piwil2 (Mili) is essential for proper neurogenesis in the postnatal mouse hippocampus. RNA sequencing of aNPCs and their differentiated progeny reveal that Mili and piRNAs are dynamically expressed in neurogenesis. Depletion of Mili and piRNAs in the adult hippocampus impairs aNPC differentiation toward a neural fate, induces senescence, and generates reactive glia. Transcripts modulated upon Mili depletion bear sequences complementary or homologous to piRNAs and include repetitive elements and mRNAs encoding essential proteins for proper neurogenesis. Our results provide evidence of a critical role for Mili in maintaining fitness and proper fate of aNPCs, underpinning a possible involvement of the piRNA pathway in brain plasticity and successful aging.


Assuntos
Proteínas Argonautas , Hipocampo , Neurogênese , Animais , Camundongos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Senescência Celular/genética , Hipocampo/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Neurogênese/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
Appl Environ Microbiol ; 79(24): 7882-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123732

RESUMO

The genus Aspergillus is a burden to public health due to its ubiquitous presence in the environment, its production of allergens, and wide demographic susceptibility among cystic fibrosis, asthmatic, and immunosuppressed patients. Current methods of detection of Aspergillus colonization and infection rely on lengthy morphological characterization or nonstandardized serological assays that are restricted to identifying a fungal etiology. Collagen-like genes have been shown to exhibit species-specific conservation across the noncollagenous regions as well as strain-specific polymorphism in the collagen-like regions. Here we assess the conserved region of the Aspergillus collagen-like (acl) genes and explore the application of PCR amplicon size-based discrimination among the five most common etiologic species of the Aspergillus genus, including Aspergillus fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus. Genetic polymorphism and phylogenetic analysis of the aclF1 gene were additionally examined among the available strains. Furthermore, the applicability of the PCR-based assay to identification of these five species in cultures derived from sputum and bronchoalveolar fluid from 19 clinical samples was explored. Application of capillary electrophoresis on nanogels was additionally demonstrated to improve the discrimination between Aspergillus species. Overall, this study demonstrated that Aspergillus acl genes could be used as PCR targets to discriminate between clinically relevant Aspergillus species. Future studies aim to utilize the detection of Aspergillus acl genes in PCR and microfluidic applications to determine the sensitivity and specificity for the identification of Aspergillus colonization and invasive aspergillosis in immunocompromised subjects.


Assuntos
Aspergilose/diagnóstico , Aspergillus/isolamento & purificação , Colágeno/genética , Técnicas de Diagnóstico Molecular/métodos , Micologia/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Aspergilose/microbiologia , Aspergillus/genética , Líquido da Lavagem Broncoalveolar/microbiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Escarro/microbiologia
4.
FASEB Bioadv ; 2(7): 387-397, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32676579

RESUMO

Stroke causes severe long-term disability in patients due to the induction of skeletal muscle atrophy and weakness, but the molecular mechanisms remain elusive. Using a preclinical mouse model of cerebral ischemic stroke, we show that stroke robustly induced atrophy and significantly decreased SirT1 gene expression in the PTA (paralytic tibialis anterior) muscle. Muscle-specific SirT1 gain-of-function mice are resistant to stroke-induced muscle atrophy and this protective effect requires its deacetylase activity. Although SirT1 counteracts the stroke-induced up-regulation of atrogin1, MuRF1 and ZNF216 genes, we found a mechanism that regulates the ZNF216 gene transcription in post-stroke muscle. Stroke increased the expression of the ZNF216 gene in PTA muscle by activating PARP-1, which binds on the ZNF216 promoter. The SirT1 gain-of-function or SirT1 activator, resveratrol, reversed the PARP-1-mediated up-regulation of ZNF216 expression at the promoter level, suggesting a contradicted role for SirT1 and PARP-1 in the regulation of ZNF216 gene. Overall, our study for the first-time demonstrated that (a) stroke causes muscle atrophy, in part, through the SirT1/PARP-1/ZNF216 signaling mechanism; (b) SirT1 can block muscle atrophy in response to different types of atrophic signals via different signaling mechanisms; and (c) SirT1 is a critical regulator of post-stroke muscle mass.

5.
J Vis Exp ; (107): e52921, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26863182

RESUMO

Behavioral assays are commonly used for the assessment of sensorimotor impairment in the central nervous system (CNS). The most sophisticated methods for quantifying locomotor deficits in rodents is to measure minute disturbances of unconstrained gait overground (e.g., manual BBB score or automated CatWalk). However, cortical inputs are not required for the generation of basic locomotion produced by the spinal central pattern generator (CPG). Thus, unconstrained walking tasks test locomotor deficits due to motor cortical impairment only indirectly. In this study, we propose a novel, precise foot-placement locomotor task that evaluates cortical inputs to the spinal CPG. An instrumented peg-way was used to impose symmetrical and asymmetrical locomotor tasks mimicking lateralized movement deficits. We demonstrate that shifts from equidistant inter-stride lengths of 20% produce changes in the forelimb stance phase characteristics during locomotion with preferred stride length. Furthermore, we propose that the asymmetric walkway allows for measurements of behavioral outcomes produced by cortical control signals. These measures are relevant for the assessment of impairment after cortical damage.


Assuntos
Marcha/fisiologia , Animais , Fenômenos Biomecânicos , Sistema Nervoso Central , Córtex Cerebral/fisiologia , Feminino , Membro Anterior/fisiologia , Locomoção/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA