Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(42): e2207293119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215488

RESUMO

The mature human brain is lateralized for language, with the left hemisphere (LH) primarily responsible for sentence processing and the right hemisphere (RH) primarily responsible for processing suprasegmental aspects of language such as vocal emotion. However, it has long been hypothesized that in early life there is plasticity for language, allowing young children to acquire language in other cortical regions when LH areas are damaged. If true, what are the constraints on functional reorganization? Which areas of the brain can acquire language, and what happens to the functions these regions ordinarily perform? We address these questions by examining long-term outcomes in adolescents and young adults who, as infants, had a perinatal arterial ischemic stroke to the LH areas ordinarily subserving sentence processing. We compared them with their healthy age-matched siblings. All participants were tested on a battery of behavioral and functional imaging tasks. While stroke participants were impaired in some nonlinguistic cognitive abilities, their processing of sentences and of vocal emotion was normal and equal to that of their healthy siblings. In almost all, these abilities have both developed in the healthy RH. Our results provide insights into the remarkable ability of the young brain to reorganize language. Reorganization is highly constrained, with sentence processing almost always in the RH frontotemporal regions homotopic to their location in the healthy brain. This activation is somewhat segregated from RH emotion processing, suggesting that the two functions perform best when each has its own neural territory.


Assuntos
Idioma , Acidente Vascular Cerebral , Adolescente , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/fisiologia , Adulto Jovem
2.
J Neurosci ; 43(45): 7489-7500, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940595

RESUMO

Stroke is one of the most common causes of disability, and there are few treatments that can improve recovery after stroke. Therapeutic development has been hindered because of a lack of understanding of precisely how neural circuits are affected by stroke, and how these circuits change to mediate recovery. Indeed, some of the hypotheses for how the CNS changes to mediate recovery, including remapping, redundancy, and diaschisis, date to more than a century ago. Recent technological advances have enabled the interrogation of neural circuits with ever greater temporal and spatial resolution. These techniques are increasingly being applied across animal models of stroke and to human stroke survivors, and are shedding light on the molecular, structural, and functional changes that neural circuits undergo after stroke. Here we review these studies and highlight important mechanisms that underlie impairment and recovery after stroke. We begin by summarizing knowledge about changes in neural activity that occur in the peri-infarct cortex, specifically considering evidence for the functional remapping hypothesis of recovery. Next, we describe the importance of neural population dynamics, disruptions in these dynamics after stroke, and how allocation of neurons into spared circuits can restore functionality. On a more global scale, we then discuss how effects on long-range pathways, including interhemispheric interactions and corticospinal tract transmission, contribute to post-stroke impairments. Finally, we look forward and consider how a deeper understanding of neural circuit mechanisms of recovery may lead to novel treatments to reduce disability and improve recovery after stroke.


Assuntos
Acidente Vascular Cerebral , Animais , Humanos , Córtex Cerebral , Neurônios , Tratos Piramidais , Recuperação de Função Fisiológica/fisiologia
3.
Cereb Cortex ; 33(23): 11257-11268, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37859521

RESUMO

When brain regions that are critical for a cognitive function in adulthood are irreversibly damaged at birth, what patterns of plasticity support the successful development of that function in an alternative location? Here we investigate the consistency of language organization in the right hemisphere (RH) after a left hemisphere (LH) perinatal stroke. We analyzed fMRI data collected during an auditory sentence comprehension task on 14 people with large cortical LH perinatal arterial ischemic strokes (left hemisphere perinatal stroke (LHPS) participants) and 11 healthy sibling controls using a "top voxel" approach that allowed us to compare the same number of active voxels across each participant and in each hemisphere for controls. We found (1) LHPS participants consistently recruited the same RH areas that were a mirror-image of typical LH areas, and (2) the RH areas recruited in LHPS participants aligned better with the strongly activated LH areas of the typically developed brains of control participants (when flipped images were compared) than the weakly activated RH areas. Our findings suggest that the successful development of language processing in the RH after a LH perinatal stroke may in part depend on recruiting an arrangement of frontotemporal areas reflective of the typical dominant LH.


Assuntos
Transtornos da Linguagem , Acidente Vascular Cerebral , Recém-Nascido , Humanos , Idioma , Acidente Vascular Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Compreensão , Imageamento por Ressonância Magnética , Lateralidade Funcional
4.
J Neurosci ; 42(24): 4913-4926, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35545436

RESUMO

Aphasia is a prevalent cognitive syndrome caused by stroke. The rarity of premorbid imaging and heterogeneity of lesion obscures the links between the local effects of the lesion, global anatomic network organization, and aphasia symptoms. We applied a simulated attack approach in humans to examine the effects of 39 stroke lesions (16 females) on anatomic network topology by simulating their effects in a control sample of 36 healthy (15 females) brain networks. We focused on measures of global network organization thought to support overall brain function and resilience in the whole brain and within the left hemisphere. After removing lesion volume from the network topology measures and behavioral scores [the Western Aphasia Battery Aphasia Quotient (WAB-AQ), four behavioral factor scores obtained from a neuropsychological battery, and a factor sum], we compared the behavioral variance accounted for by simulated poststroke connectomes to that observed in the randomly permuted data. Global measures of anatomic network topology in the whole brain and left hemisphere accounted for 10% variance or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permutations. Streamline networks provided more reliable point estimates than FA networks. Edge weights and network efficiency were weighted most highly in predicting the WAB-AQ for FA networks. Overall, our results suggest that global network measures provide modest statistical value beyond lesion volume when predicting overall aphasia severity, but less value in predicting specific behaviors. Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis, and neuroplasticity following stroke.SIGNIFICANCE STATEMENT Poststroke, the remaining neuroanatomy maintains cognition and supports recovery. However, studies often use small, cross-sectional samples that cannot fully model the interactions between lesions and other variables that affect networks in stroke. Alternate methods are required to account for these effects. "Simulated attack" models are computational approaches that apply virtual damage to the brain and measure their putative consequences. Using a simulated attack model, we estimated how simulated damage to anatomic networks could account for language performance. Overall, our results reveal that global network measures can provide modest statistical value predicting overall aphasia severity, but less value in predicting specific behaviors. These findings suggest that more theoretically precise network models could be necessary to robustly predict individual outcomes in aphasia.


Assuntos
Afasia , Conectoma , Acidente Vascular Cerebral , Afasia/diagnóstico por imagem , Afasia/etiologia , Encéfalo/patologia , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/patologia
5.
J Cogn Neurosci ; 35(7): 1169-1194, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159232

RESUMO

Despite the many mistakes we make while speaking, people can effectively communicate because we monitor our speech errors. However, the cognitive abilities and brain structures that support speech error monitoring are unclear. There may be different abilities and brain regions that support monitoring phonological speech errors versus monitoring semantic speech errors. We investigated speech, language, and cognitive control abilities that relate to detecting phonological and semantic speech errors in 41 individuals with aphasia who underwent detailed cognitive testing. Then, we used support vector regression lesion symptom mapping to identify brain regions supporting detection of phonological versus semantic errors in a group of 76 individuals with aphasia. The results revealed that motor speech deficits as well as lesions to the ventral motor cortex were related to reduced detection of phonological errors relative to semantic errors. Detection of semantic errors selectively related to auditory word comprehension deficits. Across all error types, poor cognitive control related to reduced detection. We conclude that monitoring of phonological and semantic errors relies on distinct cognitive abilities and brain regions. Furthermore, we identified cognitive control as a shared cognitive basis for monitoring all types of speech errors. These findings refine and expand our understanding of the neurocognitive basis of speech error monitoring.


Assuntos
Afasia , Semântica , Humanos , Fala , Encéfalo/patologia , Afasia/patologia , Língua/patologia
6.
Can J Neurol Sci ; 50(3): 446-449, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35321778

RESUMO

We investigated the effects of transcranial alternating stimulation (tACS) in patients with insomnia. Nine patients with chronic insomnia underwent two in-laboratory polysomnography, 2 weeks apart, and were randomized to receive tACS either during the first or second study. The stimulation was applied simultaneously and bilaterally at F3/M1 and F4/M2 electrodes (0.75 mA, 0.75 Hz, 5-minute). Sleep onset latency and wake after sleep onset dropped on the stimulation night but they did not reach statistical significance; however, there were significant improvements in spontaneous and total arousals, sleep quality, quality of life, recall memory, sleep duration, sleep efficiency, and daytime sleepiness.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Estimulação Transcraniana por Corrente Contínua , Humanos , Distúrbios do Início e da Manutenção do Sono/terapia , Qualidade de Vida , Polissonografia
7.
Proc Natl Acad Sci U S A ; 117(38): 23477-23483, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900940

RESUMO

We have long known that language is lateralized to the left hemisphere (LH) in most neurologically healthy adults. In contrast, findings on lateralization of function during development are more complex. As in adults, anatomical, electrophysiological, and neuroimaging studies in infants and children indicate LH lateralization for language. However, in very young children, lesions to either hemisphere are equally likely to result in language deficits, suggesting that language is distributed symmetrically early in life. We address this apparent contradiction by examining patterns of functional MRI (fMRI) language activation in children (ages 4 through 13) and adults (ages 18 through 29). In contrast to previous studies, we focus not on lateralization per se but rather on patterns of left-hemisphere (LH) and right-hemisphere (RH) activation across individual participants over age. Our analyses show significant activation not only in the LH language network but also in their RH homologs in all of the youngest children (ages 4 through 6). The proportion of participants showing significant RH activation decreases over age, with over 60% of adults lacking any significant RH activation. A whole-brain correlation analysis revealed an age-related decrease in language activation only in the RH homolog of Broca's area. This correlation was independent of task difficulty. We conclude that, while language is left-lateralized throughout life, the RH contribution to language processing is also strong early in life and decreases through childhood. Importantly, this early RH language activation may represent a developmental mechanism for recovery following early LH injury.


Assuntos
Encéfalo/fisiologia , Desenvolvimento da Linguagem , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Área de Broca/diagnóstico por imagem , Área de Broca/fisiologia , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
8.
Proc Biol Sci ; 288(1943): 20202651, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33499792

RESUMO

The amygdala is a subcortical structure implicated in both the expression of conditioned fear and social fear recognition. Social fear recognition deficits following amygdala lesions are often interpreted as reflecting perceptual deficits, or the amygdala's role in coordinating responses to threats. But these explanations fail to capture why amygdala lesions impair both physiological and behavioural responses to multimodal fear cues and the ability to identify them. We hypothesized that social fear recognition deficits following amygdala damage reflect impaired conceptual understanding of fear. Supporting this prediction, we found specific impairments in the ability to predict others' fear (but not other emotions) from written scenarios following bilateral amygdala lesions. This finding is consistent with the suggestion that social fear recognition, much like social recognition of states like pain, relies on shared internal representations. Preserved judgements about the permissibility of causing others fear confirms suggestions that social emotion recognition and morality are dissociable.


Assuntos
Tonsila do Cerebelo , Expressão Facial , Emoções , Medo , Princípios Morais
9.
Cereb Cortex ; 30(4): 2542-2554, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31701121

RESUMO

Two maintenance mechanisms with separate neural systems have been suggested for verbal working memory: articulatory-rehearsal and non-articulatory maintenance. Although lesion data would be key to understanding the essential neural substrates of these systems, there is little evidence from lesion studies that the two proposed mechanisms crucially rely on different neuroanatomical substrates. We examined 39 healthy adults and 71 individuals with chronic left-hemisphere stroke to determine if verbal working memory tasks with varying demands would rely on dissociable brain structures. Multivariate lesion-symptom mapping was used to identify the brain regions involved in each task, controlling for spatial working memory scores. Maintenance of verbal information relied on distinct brain regions depending on task demands: sensorimotor cortex under higher demands and superior temporal gyrus (STG) under lower demands. Inferior parietal cortex and posterior STG were involved under both low and high demands. These results suggest that maintenance of auditory information preferentially relies on auditory-phonological storage in the STG via a nonarticulatory maintenance when demands are low. Under higher demands, sensorimotor regions are crucial for the articulatory rehearsal process, which reduces the reliance on STG for maintenance. Lesions to either of these regions impair maintenance of verbal information preferentially under the appropriate task conditions.


Assuntos
Mapeamento Encefálico/métodos , Memória de Curto Prazo/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Aprendizagem Verbal/fisiologia , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/psicologia
10.
Cogn Behav Neurol ; 34(2): 96-106, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34074864

RESUMO

BACKGROUND: Aphasia is a common, debilitating consequence of stroke, and speech therapy is often inadequate to achieve a satisfactory outcome. Neuromodulation techniques have emerged as a potential augmentative treatment for improving aphasia outcomes. Most studies have targeted the cerebrum, but there are theoretical and practical reasons that stimulation over the cerebral hemispheres might not be ideal. On the other hand, the right cerebellum is functionally and anatomically linked to major language areas in the left hemisphere, making it a promising alternative target site for stimulation. OBJECTIVE: To provide preliminary effect sizes for the ability of a short course of anodal transcranial direct current stimulation (tDCS) targeted over the right cerebellum to enhance language processing in individuals with chronic poststroke aphasia. METHOD: Ten individuals received five sessions of open-label anodal tDCS targeting the right cerebellum. The effects of the tDCS were compared with the effects of sham tDCS on 14 controls from a previous clinical trial. In total, 24 individuals with chronic poststroke aphasia participated in the study. Behavioral testing was conducted before treatment, immediately following treatment, and at the 3-month follow-up. RESULTS: Cerebellar tDCS did not significantly enhance language processing measured either immediately following treatment or at the 3-month follow-up. The effect sizes of tDCS over sham treatment were generally nil or small, except for the mean length of utterance on the picture description task, for which medium to large effects were observed. CONCLUSION: These results may provide guidance for investigators who are planning larger trials of tDCS for individuals with chronic poststroke aphasia.


Assuntos
Afasia , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Adulto , Idoso , Afasia/etiologia , Afasia/terapia , Cerebelo , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia
11.
J Neurosci ; 39(27): 5361-5368, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31061085

RESUMO

Reading involves the rapid extraction of sound and meaning from print through a cooperative division of labor between phonological and lexical-semantic processes. Whereas lesion studies of patients with stereotyped acquired reading deficits contributed to the notion of a dissociation between phonological and lexical-semantic reading, the neuroanatomical basis for effects of lexicality (word vs pseudoword), orthographic regularity (regular vs irregular spelling-sound correspondences), and concreteness (concrete vs abstract meaning) on reading is underspecified, particularly outside the context of strong behavioral dissociations. Support vector regression lesion-symptom mapping (LSM) of 73 left hemisphere stroke survivors (male and female human subjects) not preselected for stereotyped dissociations revealed the differential contributions of specific cortical regions to reading pseudowords (ventral precentral gyrus), regular words (planum temporale, supramarginal gyrus, ventral precentral and postcentral gyrus, and insula), and concrete words (pars orbitalis and pars triangularis). Consistent with the primary systems view of reading being parasitic on language-general circuitry, our multivariate LSM analyses revealed that phonological decoding depends on perisylvian areas subserving sound-motor integration and that semantic effects on reading depend on frontal cortex subserving control over concrete semantic representations that aid phonological access from print. As the first study to localize the differential cortical contributions to reading pseudowords, regular words, and concrete words in stroke survivors with variable reading abilities, our results provide important information on the neurobiological basis of reading and highlight the insights attainable through multivariate, process-based approaches to alexia.SIGNIFICANCE STATEMENT Whereas fMRI evidence for neuroanatomical dissociations between phonological and lexical-semantic reading is abundant, evidence from modern lesion studies establishing the differential contributions of specific brain regions to specific reading processes is lacking. Our application of multivariate lesion-symptom mapping revealed that effects of lexicality, orthographic regularity, and concreteness on reading differentially depend on areas subserving auditory-motor integration and semantic control. Phonological decoding of print relies on a dorsal perisylvian network supporting auditory and articulatory representations, with unfamiliar words relying especially on articulatory mapping. In tandem with this dorsal decoding system, anterior inferior frontal gyrus may coordinate control over concrete semantic representations that support mapping of print to sound, which is a novel potential mechanism for semantic influences on reading.


Assuntos
Encéfalo/fisiologia , Linguística , Leitura , Semântica , Adulto , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/psicologia
12.
Neuroimage ; 215: 116806, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278896

RESUMO

The lesion method has been important for understanding brain-behavior relationships in humans, but has previously used maps based on structural damage. Lesion measurement based on structural damage may label partly damaged but functional tissue as abnormal, and moreover, ignores distant dysfunction in structurally intact tissue caused by deafferentation, diaschisis, and other processes. A reliable method to map functional integrity of tissue throughout the brain would provide a valuable new approach to measuring lesions. Here, we use machine learning on four dimensional resting state fMRI data obtained from left-hemisphere stroke survivors in the chronic period of recovery and control subjects to generate graded maps of functional anomaly throughout the brain in individual patients. These functional anomaly maps identify areas of obvious structural lesions and are stable across multiple measurements taken months and even years apart. Moreover, the maps identify functionally anomalous regions in structurally intact tissue, providing a direct measure of remote effects of lesions on the function of distant brain structures. Multivariate lesion-behavior mapping using functional anomaly maps replicates classic behavioral localization, identifying inferior frontal regions related to speech fluency, lateral temporal regions related to auditory comprehension, parietal regions related to phonology, and the hand area of motor cortex and descending corticospinal pathways for hand motor function. Further, this approach identifies relationships between tissue function and behavior distant from the structural lesions, including right premotor dysfunction related to ipsilateral hand movement, and right cerebellar regions known to contribute to speech fluency. Brain-wide maps of the functional effects of focal lesions could have wide implications for lesion-behavior association studies and studies of recovery after brain injury.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Encéfalo/patologia , Encéfalo/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Curva ROC , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
13.
Neuroimage ; 207: 116387, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31765803

RESUMO

Sequence learning underlies numerous motor, cognitive, and social skills. Previous models and empirical investigations of sequence learning in humans and non-human animals have implicated cortico-basal ganglia-cerebellar circuitry as well as other structures. To systematically examine the functional neuroanatomy of sequence learning in humans, we conducted a series of neuroanatomical meta-analyses. We focused on the serial reaction time (SRT) task. This task, which is the most widely used paradigm for probing sequence learning in humans, allows for the rigorous control of visual, motor, and other factors. Controlling for these factors (in sequence-random block contrasts), sequence learning yielded consistent activation only in the basal ganglia, across the striatum (anterior/mid caudate nucleus and putamen) and the globus pallidus. In contrast, when visual, motor, and other factors were not controlled for (in a global analysis with all sequence-baseline contrasts, not just sequence-random contrasts), premotor cortical and cerebellar activation were additionally observed. The study provides solid evidence that, at least as tested with the visuo-motor SRT task, sequence learning in humans relies on the basal ganglia, whereas cerebellar and premotor regions appear to contribute to aspects of the task not related to sequence learning itself. The findings have both basic research and translational implications.


Assuntos
Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Aprendizagem Seriada/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Feminino , Humanos , Masculino , Putamen/fisiologia
14.
Cereb Cortex ; 29(9): 3912-3921, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30364937

RESUMO

Noninvasive brain stimulation (NIBS) is a promising treatment for psychiatric and neurologic conditions, but outcomes are variable across treated individuals. In principle, precise targeting of individual-specific features of functional brain networks could improve the efficacy of NIBS interventions. Network theory predicts that the role of a node in a network can be inferred from its connections; as such, we hypothesized that targeting individual-specific "hub" brain areas with NIBS should impact cognition more than nonhub brain areas. Here, we first demonstrate that the spatial positioning of hubs is variable across individuals but reproducible within individuals upon repeated imaging. We then tested our hypothesis in healthy individuals using a prospective, within-subject, double-blind design. Inhibition of a hub with continuous theta burst stimulation disrupted information processing during working-memory more than inhibition of a nonhub area, despite targets being separated by only a few centimeters on the right middle frontal gyrus of each subject. Based upon these findings, we conclude that individual-specific brain network features are functionally relevant and could leveraged as stimulation sites in future NIBS interventions.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Memória de Curto Prazo/fisiologia , Inibição Neural/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
15.
Neuroimage ; 193: 178-200, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826361

RESUMO

Language learning as an adult, though often difficult, is quite common. Nevertheless, the neural substrates of this process remain unclear, even though identifying them should clarify how language is learned and could lead to improved success at this endeavor. We addressed this gap by conducting multiple neuroanatomical meta-analyses to synthesize the functional neuroimaging literature of language learning. We focused on learning lexical and grammatical knowledge, two building blocks of language. Lexical and grammatical learning yielded overlapping activation in frontal (e.g., BA 44/45) and posterior parietal regions. Only lexical learning showed ventral occipito-temporal (ventral stream) activation, while only grammatical learning showed basal ganglia (anterior caudate/putamen) activation. To further elucidate the neurocognition of grammar learning, we also tested specific predictions of the declarative/procedural model of language. Consistent with the model, grammar learning predicted to rely especially on declarative memory (e.g., with explicit training) showed hippocampal involvement, while grammar learning predicted to rely particularly on procedural memory (e.g., with implicit training) showed anterior caudate/putamen involvement. Finally, given the prevalence of research on artificial grammars, we performed separate analyses of artificial grammar and non-artificial grammar (e.g., miniature language) paradigms. These yielded overlapping activation, especially in BA 44, underscoring the validity of artificial grammars as models for grammar learning in natural languages. In sum, the study elucidates the empirical and theoretical landscape of language learning and has applied implications.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Idioma , Aprendizagem/fisiologia , Neuroimagem Funcional , Humanos
16.
Hum Brain Mapp ; 40(10): 3010-3026, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30921494

RESUMO

Gray matter (GM) atrophy is frequently detected in persons living with HIV, even in the era of combination antiretroviral therapy (cART), but the specificity of regions affected remains elusive. For instance, which regions are consistently affected in HIV? In addition, atrophy at which regions is frequently associated with neurocognitive impairment in HIV? Resolving these questions can potentially help to establish the possible neural profiles of HIV-associated neurocognitive disorders (HAND) severity, which currently is solely defined by neurobehavioral assessments. Here, we addressed these questions using a novel meta-analysis technique, the colocalization-likelihood estimation (CLE) technique, to quantitatively synthesize the findings of GM atrophy in HIV+ adults. Twenty-one of 386 studies published between 1988 and November 2017 and identified in PubMed were selected, plus four identified in other resources. In the end, 25 studies (1,370 HIV+ adults, 889 HIV- controls) were included in the meta-analysis. This technique revealed that GM atrophy in HIV+ adults was dominated by two distinct but nonexclusive profiles: frontal (including anterior cingulate cortex, [ACC]) atrophy, which was associated withHIV-disease and consistently differentiated HIV+ adults from HIV- controls; and caudate/striatum atrophy, which was associated with neurocognitive impairment. The critical role of caudate/striatum atrophy in neurocognitive impairment was further supported by a separate data analysis, which examined the findings of correlation analyses between GM and neurocognitive performance. These results suggest that the frontal lobe and the striatum play critical but differential roles in HAND. A neural model of HAND severity was proposed with several testable predictions.


Assuntos
Complexo AIDS Demência/patologia , Corpo Estriado/patologia , Lobo Frontal/patologia , Substância Cinzenta/patologia , Modelos Neurológicos , Atrofia/patologia , Humanos
18.
Conscious Cogn ; 71: 18-29, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30921682

RESUMO

Many individuals with aphasia report the ability to say words in their heads despite spoken naming difficulty. Here, we examined individual differences in the experience of inner speech (IS) in participants with aphasia to test the hypotheses that self-reported IS reflects intact phonological retrieval and that articulatory output processing is not essential to IS. Participants (N = 53) reported their ability to name items correctly internally during a silent picture-naming task. We compared this measure of self-reported IS to spoken picture naming and a battery of tasks measuring the underlying processes required for naming (i.e., phonological retrieval and output processing). Results from three separate analyses of these measures indicate that self-reported IS relates to phonological retrieval and that speech output processes are not a necessary component of IS. We suggest that self-reported IS may be a clinically valuable measure that could assist in clinical decision-making regarding anomia diagnosis and treatment.


Assuntos
Anomia/fisiopatologia , Afasia/fisiopatologia , Idioma , Reconhecimento Visual de Modelos/fisiologia , Fala/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aptidão/fisiologia , Feminino , Humanos , Masculino , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Autorrelato
19.
J Neurosci ; 37(6): 1604-1613, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069925

RESUMO

It has been proposed that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. In language, semantic prediction speeds speech production and comprehension. Right cerebellar lobules VI and VII (including Crus I/II) are engaged during a variety of language processes and are functionally connected with cerebral cortical language networks. Further, right posterolateral cerebellar neuromodulation modifies behavior during predictive language processing. These data are consistent with a role for the cerebellum in semantic processing and semantic prediction. We combined transcranial direct current stimulation (tDCS) and fMRI to assess the behavioral and neural consequences of cerebellar tDCS during a sentence completion task. Task-based and resting-state fMRI data were acquired in healthy human adults (n = 32; µ = 23.1 years) both before and after 20 min of 1.5 mA anodal (n = 18) or sham (n = 14) tDCS applied to the right posterolateral cerebellum. In the sentence completion task, the first four words of the sentence modulated the predictability of the final target word. In some sentences, the preceding context strongly predicted the target word, whereas other sentences were nonpredictive. Completion of predictive sentences increased activation in right Crus I/II of the cerebellum. Relative to sham tDCS, anodal tDCS increased activation in right Crus I/II during semantic prediction and enhanced resting-state functional connectivity between hubs of the reading/language networks. These results are consistent with a role for the right posterolateral cerebellum beyond motor aspects of language, and suggest that cerebellar internal models of linguistic stimuli support semantic prediction.SIGNIFICANCE STATEMENT Cerebellar involvement in language tasks and language networks is now well established, yet the specific cerebellar contribution to language processing remains unclear. It is thought that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. Here we combined neuroimaging and neuromodulation to provide evidence that the cerebellum is specifically involved in semantic prediction during sentence processing. We found that activation within right Crus I/II was enhanced when semantic predictions were made, and we show that modulation of this region with transcranial direct current stimulation alters both activation patterns and functional connectivity within whole-brain language networks. For the first time, these data show that cerebellar neuromodulation impacts activation patterns specifically during predictive language processing.


Assuntos
Cerebelo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Tempo de Reação/fisiologia , Semântica , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Cerebelo/diagnóstico por imagem , Feminino , Previsões , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos , Distribuição Aleatória , Método Simples-Cego , Adulto Jovem
20.
Hum Brain Mapp ; 39(11): 4169-4182, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29972618

RESUMO

Lesion-symptom mapping has become a cornerstone of neuroscience research seeking to localize cognitive function in the brain by examining the sequelae of brain lesions. Recently, multivariate lesion-symptom mapping methods have emerged, such as support vector regression, which simultaneously consider many voxels at once when determining whether damaged regions contribute to behavioral deficits (Zhang, Kimberg, Coslett, Schwartz, & Wang, ). Such multivariate approaches are capable of identifying complex dependences that traditional mass-univariate approach cannot. Here, we provide a new toolbox for support vector regression lesion-symptom mapping (SVR-LSM) that provides a graphical interface and enhances the flexibility and rigor of analyses that can be conducted using this method. Specifically, the toolbox provides cluster-level family-wise error correction via permutation testing, the capacity to incorporate arbitrary nuisance models for behavioral data and lesion data and makes available a range of lesion volume correction methods including a new approach that regresses lesion volume out of each voxel in the lesion maps. We demonstrate these new tools in a cohort of chronic left-hemisphere stroke survivors and examine the difference between results achieved with various lesion volume control methods. A strong bias was found toward brain wide lesion-deficit associations in both SVR-LSM and traditional mass-univariate voxel-based lesion symptom mapping when lesion volume was not adequately controlled. This bias was corrected using three different regression approaches; among these, regressing lesion volume out of both the behavioral score and the lesion maps provided the greatest sensitivity in analyses.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Humanos , Análise Multivariada , Testes Neuropsicológicos , Análise de Regressão , Máquina de Vetores de Suporte , Fatores de Tempo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA