Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mol Ecol ; 31(3): 822-838, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779078

RESUMO

Masting, the synchronous, highly variable flowering across years by a population of perennial plants, has been reported to be precipitated by various factors including nitrogen levels, drought conditions, and spring and summer temperatures. However, the molecular mechanism leading to the initiation of flowering in masting plants in particular years remains largely unknown, despite the potential impact of climate change on masting phenology. We studied genes controlling flowering in the alpine snow tussock Chionochloa pallens (Poaceae), a strongly masting perennial grass. We used a range of in situ and manipulated plants to obtain leaf samples from tillers (shoots) which subsequently remained vegetative or flowered. Here, we show that a novel orthologue of TERMINAL FLOWER 1 (TFL1; normally a repressor of flowering in other species) promotes the induction of flowering in C. pallens (hence Anti-TFL1), a conclusion supported by structural, functional and expression analyses. Global transcriptomic analysis indicated differential expression of CpTPS1, CpGA20ox1, CpREF6 and CpHDA6, emphasizing the role of endogenous cues and epigenetic regulation in terms of responsiveness of plants to initiate flowering. Our molecular-based study provides insights into the cellular mechanism of flowering in masting plants and will supplement ecological and statistical models to predict how masting will respond to global climate change.


Assuntos
Poaceae , Neve , Mudança Climática , Epigênese Genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Poaceae/genética
2.
New Phytol ; 229(3): 1312-1325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32931621

RESUMO

Short-term temperature response curves of leaf dark respiration (R-T) provide insights into a critical process that influences plant net carbon exchange. This includes how respiratory traits acclimate to sustained changes in the environment. Our study analysed 860 high-resolution R-T (10-70°C range) curves for: (a) 62 evergreen species measured in two contrasting seasons across several field sites/biomes; and (b) 21 species (subset of those sampled in the field) grown in glasshouses at 20°C : 15°C, 25°C : 20°C and 30°C : 25°C, day : night. In the field, across all sites/seasons, variations in R25 (measured at 25°C) and the leaf T where R reached its maximum (Tmax ) were explained by growth T (mean air-T of 30-d before measurement), solar irradiance and vapour pressure deficit, with growth T having the strongest influence. R25 decreased and Tmax increased with rising growth T across all sites and seasons with the single exception of winter at the cool-temperate rainforest site where irradiance was low. The glasshouse study confirmed that R25 and Tmax thermally acclimated. Collectively, the results suggest: (1) thermal acclimation of leaf R is common in most biomes; and (2) the high T threshold of respiration dynamically adjusts upward when plants are challenged with warmer and hotter climates.


Assuntos
Aclimatação , Folhas de Planta , Ecossistema , Respiração , Temperatura
3.
Mol Ecol ; 30(8): 1846-1863, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624370

RESUMO

Mast flowering (or masting) is synchronous, highly variable flowering among years in populations of perennial plants. Despite having widespread consequences for seed consumers, endangered fauna and human health, masting is hard to predict. While observational studies show links to various weather patterns in different plant species, the mechanism(s) underpinning the regulation of masting is still not fully explained. We studied floral induction in Celmisia lyallii (Asteraceae), a mast flowering herbaceous alpine perennial, comparing gene expression in flowering and nonflowering plants. We performed translocation experiments to induce the floral transition in C. lyallii plants followed by both global and targeted expression analysis of flowering-pathway genes. Differential expression analysis showed elevated expression of ClSOC1 and ClmiR172 (promoters of flowering) in leaves of plants that subsequently flowered, in contrast to elevated expression of ClAFT and ClTOE1 (repressors of flowering) in leaves of plants that did not flower. The warm summer conditions that promoted flowering led to differential regulation of age and hormonal pathway genes, including ClmiR172 and ClGA20ox2, known to repress the expression of floral repressors and permit flowering. Upregulated expression of epigenetic modifiers of floral promoters also suggests that plants may maintain a novel "summer memory" across years to induce flowering. These results provide a basic mechanistic understanding of floral induction in masting plants and evidence of their ability to imprint various environmental cues to synchronize flowering, allowing us to better predict masting events under climate change.


Assuntos
Asteraceae , Asteraceae/genética , Mudança Climática , Flores/genética , Regulação da Expressão Gênica de Plantas , Humanos , Folhas de Planta , Sementes
4.
Ann Bot ; 125(6): 851-858, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31960889

RESUMO

BACKGROUND: Mast flowering ('masting') is characterized by mass synchronized flowering at irregular intervals in populations of perennial plants over a wide geographical area, resulting in irregular high seed production. While masting is a global phenomenon, it is particularly prevalent in the alpine flora of New Zealand. Increases in global temperature may alter the masting pattern, affecting wider communities with a potential impact on plant-pollinator interactions, seed set and food availability for seed-consuming species. SCOPE: This review summarizes an ecological temperature model (ΔT) that is being used to predict the intensity of a masting season. We introduce current molecular studies on flowering and the concept of an 'epigenetic summer memory' as a driver of mast flowering. We propose a hypothetical model based on temperature-associated epigenetic modifications of the floral integrator genes FLOWERING LOCUS T, FLOWERING LOCUS C and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. CONCLUSIONS: Genome-wide transcriptomic and targeted gene expression analyses are needed to establish the developmental and physiological processes associated with masting. Such analyses may identify changes in gene expression that can be used to predict the intensity of a forthcoming masting season, as well as to determine the extent to which climate change will influence the mass synchronized flowering of masting species, with downstream impacts on their associated communities.


Assuntos
Mudança Climática , Sementes , Epigênese Genética , Flores , Nova Zelândia , Estações do Ano
5.
Proc Natl Acad Sci U S A ; 113(14): 3832-7, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001849

RESUMO

Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.


Assuntos
Aclimatação/fisiologia , Respiração Celular/fisiologia , Metabolismo Energético/fisiologia , Folhas de Planta/metabolismo , Árvores/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Temperatura Alta
6.
Microb Ecol ; 75(2): 419-433, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28875273

RESUMO

A central challenge in community ecology is understanding the role that phenotypic variation among genotypes plays in structuring host-associated communities. While recent studies have investigated the relationship between plant genotype and the composition of soil microbial communities, the effect of genotype-by-environment interactions on the plant microbiome remains unclear. In this study, we assessed the influence of tree genetics (G), nitrogen (N) form and genotype-by-environment interaction (G x N) on the composition of the root microbiome. Rhizosphere communities (bacteria and fungi) and root-associated fungi (including ectomycorrhizal and saprotrophic guilds) were characterised in two genotypes of Pinus radiata with contrasting physiological responses to exogenous organic or inorganic N supply. Genotype-specific responses to N form influenced the composition of the root microbiome. Specifically, (1) diversity and composition of rhizosphere bacterial and root-associated fungal communities differed between genotypes that had distinct responses to N form, (2) shifts in the relative abundance of individual taxa were driven by the main effects of N form or host genotype and (3) the root microbiome of the P. radiata genotype with the most divergent growth responses to organic and inorganic N was most sensitive to differences in N form. Our results show that intraspecific variation in tree response to N form has significant consequences for the root microbiome of P. radiata, demonstrating the importance of genotype-by-environment interactions in shaping host-associated communities.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota , Nitrogênio/análise , Pinus/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Genótipo , Nitrogênio/metabolismo , Pinus/metabolismo , Pinus/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
7.
New Phytol ; 215(3): 992-1008, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28505389

RESUMO

Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 µM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange.


Assuntos
Ambiente Controlado , Nitrogênio/farmacologia , Fósforo/farmacologia , Folhas de Planta/fisiologia , Análise de Variância , Dióxido de Carbono/metabolismo , Luz , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Característica Quantitativa Herdável , Amido/metabolismo , Açúcares/metabolismo
8.
New Phytol ; 214(3): 1064-1077, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27159833

RESUMO

Leaf dark respiration (Rdark ) represents an important component controlling the carbon balance in tropical forests. Here, we test how nitrogen (N) and phosphorus (P) affect Rdark and its relationship with photosynthesis using three widely separated tropical forests which differ in soil fertility. Rdark was measured on 431 rainforest canopy trees, from 182 species, in French Guiana, Peru and Australia. The variation in Rdark was examined in relation to leaf N and P content, leaf structure and maximum photosynthetic rates at ambient and saturating atmospheric CO2 concentration. We found that the site with the lowest fertility (French Guiana) exhibited greater rates of Rdark per unit leaf N, P and photosynthesis. The data from Australia, for which there were no phylogenetic overlaps with the samples from the South American sites, yielded the most distinct relationships of Rdark with the measured leaf traits. Our data indicate that no single universal scaling relationship accounts for variation in Rdark across this large biogeographical space. Variability between sites in the absolute rates of Rdark and the Rdark  : photosynthesis ratio were driven by variations in N- and P-use efficiency, which were related to both taxonomic and environmental variability.


Assuntos
Florestas , Nitrogênio/metabolismo , Fósforo/metabolismo , Clima Tropical , Austrália , Respiração Celular , Escuridão , Guiana Francesa , Luz , Peru , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Análise de Regressão , Solo/química
9.
Glob Chang Biol ; 23(1): 209-223, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562605

RESUMO

High-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high-temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site-based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax , the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (˜8 °C) from polar to equatorial regions. Such increases in high-temperature tolerance are much less than expected based on the 20 °C span in high-temperature extremes across the globe. Moreover, with only modest high-temperature tolerance despite high summer temperature extremes, species in mid-latitude (~20-50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat-wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat-wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax , we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat-wave events become more severe with climate change.


Assuntos
Aclimatação , Mudança Climática , Folhas de Planta/metabolismo , Animais , Regiões Árticas , Clorofila , Clorofila A , Temperatura
10.
Ann Bot ; 119(8): 1353-1364, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334245

RESUMO

Background and Aims: The efficiency of N assimilation in response to defoliation is a critical component of plant regrowth and forage production. The aim of this research was to test the effect of the internal C/N balance on NO3- assimilation and to estimate the associated cytokinin signals following defoliation of perennial ryegrass ( Lolium perenne L. 'Grasslands Nui') plants. Methods: Plants, manipulated to have contrasting internal N content and contrasting availability of water soluble carbohydrates (WSCs), were obtained by exposure to either continuous light or short days (8:16 h light-dark), and watered with modified N-free Hoagland medium containing either high (5 m m ) or low (50 µ m ) NO3- as sole N source. Half of the plants were defoliated and the root, sheath and leaf tissue were harvested at 8, 24 and 168 h after cutting. The spatiotemporal changes in WSCs, synthesis of amino acids and associated cytokinin content were recorded after cutting. Key Results: Leaf regrowth following defoliation involved changes in the low- and high-molecular weight WSCs. The extent of the changes and the partitioning of the WSC following defoliation were dependant on the initial WSC levels and the C and N availability. Cytokinin levels varied in the sheath and root as early as 8 h following defoliation and preceded an overall increase in amino acids at 24 h. Subsequently, negative feedback brought the amino acid response back towards pre-defoliation levels within 168 h after cutting, a response that was under control of the C/N ratio. Conclusions: WSC remobilization in the leaf is coordinated with N availability to the root, potentially via a systemic cytokinin signal, leading to efficient N assimilation in the leaf and the sheath tissues and to early leaf regrowth following defoliation.


Assuntos
Carbono/metabolismo , Citocininas/metabolismo , Lolium/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Lolium/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
11.
Physiol Plant ; 156(4): 497-511, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661753

RESUMO

The efficiency of inorganic nitrogen (N) assimilation is a critical component of fertilizer use by plants and of forage production in Lolium perenne, an important pasture species worldwide. We present a spatiotemporal description of nitrate use efficiency in terms of metabolic responses and carbohydrate remobilization, together with components of cytokinin signal transduction following nitrate addition to N-impoverished plants. Perennial ryegrass (L. perenne cv. Grasslands Nui) plants were grown for 10 weeks in unfertilized soil and then treated with nitrate (5 mM) hydroponically. Metabolomic analysis by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry revealed a dynamic interaction between N and carbon metabolism over a week-long time course represented by the relative abundance of amino acids, tricarboxylic acid intermediates and stored water-soluble carbohydrates (WSCs). The initial response to N addition was characterized by a rapid remobilization of carbon stores from the low-molecular weight WSC, along with an increase in N content and assimilation into free amino acids. Subsequently, the shoot became the main source of carbon through remobilization of a large pool of high-molecular weight WSC. Associated quantification of cytokinin levels and expression profiling of putative cytokinin response regulator genes by quantitative reverse transcription polymerase chain reaction support a role for cytokinin in the mediation of the response to N addition in perennial ryegrass. The presence of high levels of cis-zeatin-type cytokinins is discussed in the context of hormonal homeostasis under the stress of steady-state N deficiency.


Assuntos
Carbono/metabolismo , Citocininas/metabolismo , Lolium/fisiologia , Nitratos/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Transporte Biológico , Fertilizantes , Cromatografia Gasosa-Espectrometria de Massas , Hidroponia , Lolium/efeitos dos fármacos , Metabolômica , Nitratos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Solo/química , Zeatina/metabolismo
12.
Glob Chang Biol ; 20(8): 2618-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24510889

RESUMO

Despite concern about the status of carbon (C) in the Arctic tundra, there is currently little information on how plant respiration varies in response to environmental change in this region. We quantified the impact of long-term nitrogen (N) and phosphorus (P) treatments and greenhouse warming on the short-term temperature (T) response and sensitivity of leaf respiration (R), the high-T threshold of R, and associated traits in shoots of the Arctic shrub Betula nana in experimental plots at Toolik Lake, Alaska. Respiration only acclimated to greenhouse warming in plots provided with both N and P (resulting in a ~30% reduction in carbon efflux in shoots measured at 10 and 20 °C), suggesting a nutrient dependence of metabolic adjustment. Neither greenhouse nor N+P treatments impacted on the respiratory sensitivity to T (Q10 ); overall, Q10 values decreased with increasing measuring T, from ~3.0 at 5 °C to ~1.5 at 35 °C. New high-resolution measurements of R across a range of measuring Ts (25-70 °C) yielded insights into the T at which maximal rates of R occurred (Tmax ). Although growth temperature did not affect Tmax , N+P fertilization increased Tmax values ~5 °C, from 53 to 58 °C. N+P fertilized shoots exhibited greater rates of R than nonfertilized shoots, with this effect diminishing under greenhouse warming. Collectively, our results highlight the nutrient dependence of thermal acclimation of leaf R in B. nana, suggesting that the metabolic efficiency allowed via thermal acclimation may be impaired at current levels of soil nutrient availability. This finding has important implications for predicting carbon fluxes in Arctic ecosystems, particularly if soil N and P become more abundant in the future as the tundra warms.


Assuntos
Aclimatação , Betula/metabolismo , Mudança Climática , Nitrogênio/metabolismo , Fósforo/metabolismo , Brotos de Planta/metabolismo , Alaska , Regiões Árticas , Betula/anatomia & histologia , Betula/crescimento & desenvolvimento , Respiração Celular , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Temperatura
14.
New Phytol ; 197(4): 1161-1172, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23278298

RESUMO

Laboratory studies indicate that, in response to environmental conditions, plants modulate respiratory electron partitioning between the 'energy-wasteful' alternative pathway (AP) and the 'energy-conserving' cytochrome pathway (CP). Field data, however, are scarce. Here we investigate how 20-yr field manipulations simulating global change affected electron partitioning in Alaskan Arctic tundra species. We sampled leaves from three dominant tundra species - Betula nana, Eriophorum vaginatum and Rubus chamaemorus - that had been strongly affected by manipulations of soil nutrients, light availability, and warming. We measured foliar dark respiration, in-vivo electron partitioning and alternative oxidase/cytochrome c oxidase concentrations in addition to leaf traits and mitochondrial ultrastructure. Changes in leaf traits and ultrastructure were similar across species. Respiration at 20°C (R(20)) was reduced 15% in all three species grown at elevated temperature, suggesting thermal acclimation of respiration. In Betula, the species with the largest growth response to added nutrients, CP activity increased from 9.4 ± 0.8 to 16.6 ± 1.6 nmol O(2) g(-1) DM s(-1) whereas AP activity was unchanged. The ability of Betula to selectively increase CP activity in response to the environment may contribute to its overall ecological success by increasing respiratory energy efficiency, and thus retaining more carbon for growth.


Assuntos
Aclimatação , Betula/fisiologia , Dióxido de Carbono/metabolismo , Cyperaceae/fisiologia , Rosaceae/fisiologia , Regiões Árticas , Betula/metabolismo , Betula/ultraestrutura , Mudança Climática , Cyperaceae/metabolismo , Cyperaceae/ultraestrutura , Citocromos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Rosaceae/metabolismo , Rosaceae/ultraestrutura , Temperatura
15.
Plant Cell Environ ; 36(6): 1120-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23210522

RESUMO

Laboratory studies indicate that plant respiratory efficiency may decrease in response to low nutrient availability due to increased partitioning of electrons to the energy-wasteful alternative oxidase (AOX); however, field confirmation of this hypothesis is lacking. We therefore investigated plant respiratory changes associated with succession and retrogression in soils aged from 10 to 120 000 years along the Franz Josef soil chronosequence, New Zealand. Respiration rates and electron partitioning were determined based on oxygen isotopic fractionation. Leaf structural traits, foliar nutrient status, carbohydrates and species composition were measured as explanatory variables. Although soil nutrient levels and species composition varied by site along the chronosequence, foliar respiration across all sites and species corresponded strongly with leaf nitrogen concentration (r(2) = 0.8). In contrast, electron partitioning declined with increasing nitrogen/phosphorus (r(2) = 0.23) and AOX activity correlated with phosphorus (r(2) = 0.64). Independently, total respiration was further associated with foliar Cu, possibly linked to its effect on AOX. Independent control of AOX and cytochrome pathway activities is also discussed. These responses of plant terminal respiratory oxidases - and therefore respiratory carbon efficiency - to multiple nutrient deficiencies demonstrate that modulation of respiratory metabolism may play an important role in plant responses to nutrient gradients.


Assuntos
Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Solo , Respiração Celular , Cobre/metabolismo , Ecossistema , Ferro/metabolismo , Nova Zelândia , Folhas de Planta/fisiologia
16.
J Sci Food Agric ; 93(10): 2470-7, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23494930

RESUMO

BACKGROUND: Non-structural carbohydrate (NSC; glucose, fructose, sucrose and fructan) composition of onions (Allium cepa L.) varies widely and is a key determinant of market usage. To analyse the physiology and genetics of onion carbohydrate metabolism and to enable selective breeding, an inexpensive, reliable and practicable sugar assay is required to phenotype large numbers of samples. RESULTS: A rapid, reliable and cost-effective microplate-based assay was developed for NSC analysis in onions and used to characterise variation in tissue hexose, sucrose and fructan content in open-pollinated breeding populations and in mapping populations developed from a wide onion cross. Sucrose measured in microplates employing maltase as a hydrolytic enzyme was in agreement with HPLC-PAD results. The method revealed significant variation in bulb fructan content within open-pollinated 'Pukekohe Longkeeper' breeding populations over a threefold range. Very wide segregation from 80 to 600 g kg(-1) in fructan content was observed in bulbs of F2 genetic mapping populations from the wide onion cross 'Nasik Red × CUDH2150'. CONCLUSION: The microplate enzymatic assay is a reliable and practicable method for onion sugar analysis for genetics, breeding and food technology. Open-pollinated onion populations may harbour extensive within-population variability in carbohydrate content, which may be quantified and exploited using this method. The phenotypic data obtained from genetic mapping populations show that the method is well suited to detailed genetic and physiological analysis.


Assuntos
Sacarose Alimentar/análise , Ensaios Enzimáticos/métodos , Frutanos/análise , Variação Genética , Cebolas/química , Fenótipo , Raízes de Plantas/química , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Frutanos/genética , Cebolas/genética , Reprodutibilidade dos Testes , Sacarose/análise , alfa-Glucosidases/metabolismo
18.
Plant Cell Environ ; 35(8): 1518-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22428947

RESUMO

Plants can alter rates of electron transport through the alternative oxidase (AOX) pathway in response to environmental cues, thus modulating respiratory efficiency, but the (18)O discrimination method necessary for measuring electron partitioning in vivo has been restricted to laboratory settings. To overcome this limitation, we developed a field-compatible analytical method. Series of plant tissue subsamples were incubated in 12 mL septum-capped vials for 0.5-4 h before aliquots of incubation air were injected into 3.7 mL evacuated storage vials. Vials were stored for up to 10 months before analysis by mass spectrometry. Measurements were corrected for unavoidable contamination. Additional mathematical tools were developed for detecting and addressing non-linearity (whether intrinsic or due to contamination) in the data used to estimate discrimination values. Initial contamination in the storage vials was 0.03 ± 0.01 atm; storing the gas samples at -17 °C eliminated further contamination effects over 10 months. Discrimination values obtained using our offline incubation and computation method replicated previously reported results over a range of 10-31‰, with precision generally better than ±0.5‰. Our method enables large-scale investigations of plant alternative respiration along natural environmental gradients under field conditions.


Assuntos
Isótopos de Oxigênio/metabolismo , Respiração , Transporte de Elétrons
19.
Am J Bot ; 99(10): 1702-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22984095

RESUMO

PREMISE OF THE STUDY: Consequences of global climate change are detectable in the historically nitrogen- and phosphorus-limited Arctic tundra landscape and have implications for the terrestrial carbon cycle. Warmer temperatures and elevated soil nutrient availability associated with increased microbial activity may influence rates of photosynthesis and respiration. • METHODS: This study examined leaf-level gas exchange, cellular ultrastructure, and related leaf traits in two dominant tundra species, Betula nana, a woody shrub, and Eriophorum vaginatum, a tussock sedge, under a 3-yr-old treatment gradient of nitrogen (N) and phosphorus (P) fertilization in the North Slope of Alaska. • KEY RESULTS: Respiration increased with N and P addition-the highest rates corresponding to the highest concentrations of leaf N in both species. The inhibition of respiration by light ("Kok effect") significantly reduced respiration rates in both species (P < 0.001), ranged from 12-63% (mean 34%), and generally decreased with fertilization for both species. However, in both species, observed rates of photosynthesis did not increase, and photosynthetic nitrogen use efficiency generally decreased under increasing fertilization. Chloroplast and mitochondrial size and density were highly sensitive to N and P fertilization (P < 0.001), though species interactions indicated divergent cellular organizational strategies. • CONCLUSIONS: Results from this study demonstrate a species-specific decoupling of respiration and photosynthesis under N and P fertilization, implying an alteration of the carbon balance of the tundra ecosystem under future conditions.


Assuntos
Betula/metabolismo , Ciclo do Carbono , Cyperaceae/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Análise de Variância , Regiões Árticas , Betula/citologia , Betula/crescimento & desenvolvimento , Betula/ultraestrutura , Biomassa , Ciclo do Carbono/efeitos da radiação , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Cyperaceae/citologia , Cyperaceae/crescimento & desenvolvimento , Cyperaceae/ultraestrutura , Fertilização/efeitos da radiação , Luz , Células do Mesofilo/citologia , Células do Mesofilo/efeitos da radiação , Células do Mesofilo/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Consumo de Oxigênio/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Temperatura
20.
Rapid Commun Mass Spectrom ; 26(4): 460-8, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22279022

RESUMO

RATIONALE: Environmental and biological investigations may require samples that vary over a wide range of concentrations and isotope ratios, making measurements using continuous flow isotope ratio mass spectrometry (CF-IRMS) problematic due to nonlinear signal response. We therefore developed a mathematical approach for correcting nonlinearities over a wide range of sample concentrations and actual δ values. METHODS: Dilution series for two standards were prepared in septum-capped vials and introduced into the mass spectrometer via the standard sampling pathway. Parameters for a nonlinear signal correction were determined by regression on measured isotope ratio vs. both signal strength and actual isotope ratio. We further extended the dynamic range by adjusting the position of an open split based on analyte concentration. Effects of the open split setting required additional mathematical correction. RESULTS: The nonlinearities were corrected over a 100-fold range of sample concentrations and across a 600‰ change in isotope ratios (for δO(2) /N(2) values). The precision, measured as standard deviation, across the upper 90% of the concentration range was ±0.08‰, ±0.05‰, and ±2.6‰ for δ(18) O, δ(15) N, and δO(2) /N(2) values, respectively; the precision across the lower 10% of the range was ±0.22‰, ±0.07‰, and ±7.6‰, respectively. In all cases the linearity correction represented only a small fraction of these precision values. CONCLUSIONS: The empirical correction described here provides a relatively simple yet effective way to increase the usable signal range for CF-IRMS applications. This improvement in dynamic range should be especially helpful for environmental and biological field studies, where sampling methods may be constrained by external factors.


Assuntos
Isótopos/análise , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Análise de Regressão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA