Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Pediatr ; 32(1): 1-6, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31876621

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to describe current advances in pediatric precision therapy through innovations in technology and engineering. A multimodal approach of chemotherapy, surgery and/or radiation therapy has improved survival outcomes for pediatric cancer but with significant early and late toxicities. The pediatric population is particularly vulnerable given their age during treatment. Advances in precision interventions discussed include image guidance, ablation techniques, radiation therapy and novel drug delivery mechanisms that offer the potential for more targeted approach approaches with improved efficacy while limiting acute and late toxicities. RECENT FINDINGS: Image-guidance provides improved treatment planning, real time monitoring and targeting when combined with ablative techniques and radiation therapy. Advances in drug delivery including radioisotopes, nanoparticles and antibody drug conjugates have shown benefit in adult malignancies with increasing use in pediatrics. These therapies alone and combined may lead to augmented local antitumor effect while sparing systemic exposure and potentially limiting early and late toxicities. SUMMARY: Pediatric cancer medicine often requires a multimodal approach, each with early and late toxicities. Precision interventions and therapies offer promise for more targeted approaches in treating pediatric malignancies and require further investigation to determine long-term benefit.


Assuntos
Terapia Combinada/tendências , Oncologia/tendências , Neoplasias/terapia , Medicina de Precisão/tendências , Criança , Terapia Combinada/efeitos adversos , Atenção à Saúde , Humanos , Pediatria/tendências , Tecnologia
2.
Neurooncol Adv ; 3(1): vdab116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604751

RESUMO

BACKGROUND: Patients with Neurofibromatosis Type 1 (NF1) and plexiform neurofibromas (PN) often have radiographically diagnosed distinct nodular lesions (DNL) which can cause pain and weakness. Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) can precisely and accurately deliver heat to thermally ablate target tissue. The aim of this study is to evaluate whole-body MRIs from patients with NF1 and DNL, applying volumetrics and a consistent treatment planning approach to determine the feasibility of MR-HIFU ablation of DNL. METHODS: A retrospective review of whole-body MRI scans from patients with NF1 and PN from CNH and NCI was performed. DNL are defined as lesions >3 cm, distinct from PN and lacking the "central dot" feature. Criteria for MR-HIFU thermal ablation include target location 1-8 cm from skin surface; >1 cm from visible plexus, spinal canal, bladder, bowel, physis; and ability to ablate ≥50% of lesion volume. Lesions in skull and vertebral body were excluded. RESULTS: In 26 patients, 120 DNL were identified. The majority of DNL were located in an extremity (52.5%). Other sites included head/neck (7%), chest (13%), and abdomen/pelvis (28%). The predefined HIFU ablation criteria was not met for 47.5% of lesions (n = 57). The main limitation was proximity to a vital structure or organ (79%). Complete and partial HIFU ablation was feasible for 25% and 27.5% of lesions, respectively. CONCLUSION: Based on imaging review of lesion location, technical considerations and ability to target lesions, thermal ablation with MR-HIFU may be a feasible noninvasive alternative for symptom management in patients with NF1 and symptomatic DNL.

3.
Adv Drug Deliv Rev ; 163-164: 157-167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33203538

RESUMO

Local application of hyperthermia has a myriad of effects on the tumor microenvironment as well as the host's immune system. Ablative hyperthermia (typically > 55 °C) has been used both as monotherapy and adjuvant therapy, while mild hyperthermia treatment (39-45 °C) demonstrated efficacy as an adjuvant therapy through enhancement of both chemotherapy and radiation therapy. Clinical integration of hyperthermia has especially great potential in pediatric oncology, where current chemotherapy regimens have reached maximum tolerability and the young age of patients implies significant risks of late effects related to therapy. Furthermore, activation of both local and systemic immune response by hyperthermia suggests that hyperthermia treatments could be used to enhance the anticancer effects of immunotherapy. This review summarizes the state of current applications of hyperthermia in pediatric oncology and discusses the use of hyperthermia in the context of other available treatments and promising pre-clinical research.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hipertermia Induzida/métodos , Neoplasias/tratamento farmacológico , Pediatria , Distúrbios no Reparo do DNA/patologia , Ablação por Ultrassom Focalizado de Alta Intensidade , Humanos , Sistema Imunitário/fisiologia , Lipossomos/química , Instabilidade de Microssatélites , Micro-Ondas/uso terapêutico , Microambiente Tumoral/fisiologia , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA