Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Cell ; 171(3): 628-641.e26, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053969

RESUMO

Ferroptosis is a form of programmed cell death that is pathogenic to several acute and chronic diseases and executed via oxygenation of polyunsaturated phosphatidylethanolamines (PE) by 15-lipoxygenases (15-LO) that normally use free polyunsaturated fatty acids as substrates. Mechanisms of the altered 15-LO substrate specificity are enigmatic. We sought a common ferroptosis regulator for 15LO. We discovered that PEBP1, a scaffold protein inhibitor of protein kinase cascades, complexes with two 15LO isoforms, 15LO1 and 15LO2, and changes their substrate competence to generate hydroperoxy-PE. Inadequate reduction of hydroperoxy-PE due to insufficiency or dysfunction of a selenoperoxidase, GPX4, leads to ferroptosis. We demonstrated the importance of PEBP1-dependent regulatory mechanisms of ferroptotic death in airway epithelial cells in asthma, kidney epithelial cells in renal failure, and cortical and hippocampal neurons in brain trauma. As master regulators of ferroptotic cell death with profound implications for human disease, PEBP1/15LO complexes represent a new target for drug discovery.


Assuntos
Injúria Renal Aguda/patologia , Asma/patologia , Lesões Encefálicas Traumáticas/patologia , Morte Celular , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Asma/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Isoenzimas/metabolismo , Lipoxigenase/química , Lipoxigenase/metabolismo , Camundongos , Modelos Moleculares , Oxazolidinonas/farmacologia , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/química
2.
Nature ; 612(7939): 338-346, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385526

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death that is triggered by the discoordination of regulatory redox mechanisms culminating in massive peroxidation of polyunsaturated phospholipids. Ferroptosis inducers have shown considerable effectiveness in killing tumour cells in vitro, yet there has been no obvious success in experimental animal models, with the notable exception of immunodeficient mice1,2. This suggests that the effect of ferroptosis on immune cells remains poorly understood. Pathologically activated neutrophils (PMNs), termed myeloid-derived suppressor cells (PMN-MDSCs), are major negative regulators of anti-tumour immunity3-5. Here we found that PMN-MDSCs in the tumour microenvironment spontaneously die by ferroptosis. Although decreasing the presence of PMN-MDSCs, ferroptosis induces the release of oxygenated lipids and limits the activity of human and mouse T cells. In immunocompetent mice, genetic and pharmacological inhibition of ferroptosis abrogates suppressive activity of PMN-MDSCs, reduces tumour progression and synergizes with immune checkpoint blockade to suppress the tumour growth. By contrast, induction of ferroptosis in immunocompetent mice promotes tumour growth. Thus, ferroptosis is a unique and targetable immunosuppressive mechanism of PMN-MDSCs in the tumour microenvironment that can be pharmacologically modulated to limit tumour progression.


Assuntos
Neoplasias , Humanos , Camundongos , Animais , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 120(25): e2218896120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37327313

RESUMO

Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.


Assuntos
Ferroptose , Proteína de Ligação a Fosfatidiletanolamina , Glutationa/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Lipídeos , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/antagonistas & inibidores
4.
Proc Natl Acad Sci U S A ; 119(10): e2111537119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238643

RESUMO

Ischemia reperfusion injury represents a common pathological condition that is triggered by the release of endogenous ligands. While neutrophils are known to play a critical role in its pathogenesis, the tissue-specific spatiotemporal regulation of ischemia-reperfusion injury is not understood. Here, using oxidative lipidomics and intravital imaging of transplanted mouse lungs that are subjected to severe ischemia reperfusion injury, we discovered that necroptosis, a nonapoptotic form of cell death, triggers the recruitment of neutrophils. During the initial stages of inflammation, neutrophils traffic predominantly to subpleural vessels, where their aggregation is directed by chemoattractants produced by nonclassical monocytes that are spatially restricted in this vascular compartment. Subsequent neutrophilic disruption of capillaries resulting in vascular leakage is associated with impaired graft function. We found that TLR4 signaling in vascular endothelial cells and downstream NADPH oxidase 4 expression mediate the arrest of neutrophils, a step upstream of their extravasation. Neutrophil extracellular traps formed in injured lungs and their disruption with DNase prevented vascular leakage and ameliorated primary graft dysfunction. Thus, we have uncovered mechanisms that regulate the initial recruitment of neutrophils to injured lungs, which result in selective damage to subpleural pulmonary vessels and primary graft dysfunction. Our findings could lead to the development of new therapeutics that protect lungs from ischemia reperfusion injury.


Assuntos
Endotélio Vascular/metabolismo , Pulmão/metabolismo , Necroptose , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Endotélio Vascular/lesões , Humanos , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
Angew Chem Int Ed Engl ; 63(9): e202314710, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38230815

RESUMO

The vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic. Here we report that 15-lipoxygenase (15LOX) exhibits unexpectedly high pro-ferroptotic peroxidation activity towards di-PUFA-PEs. We revealed that peroxidation of several molecular species of di-PUFA-PEs occurred early in ferroptosis. Ferrostatin-1, a typical ferroptosis inhibitor, effectively prevented peroxidation of di-PUFA-PEs. Furthermore, co-incubation of cells with di-AA-PE and 15LOX produced PUFA-PE peroxidation and induced ferroptotic death. The decreased contents of di-PUFA-PEs in ACSL4 KO A375 cells was associated with lower levels of di-PUFA-PE peroxidation and enhanced resistance to ferroptosis. Thus, di-PUFA-PE species are newly identified phospholipid peroxidation substrates and regulators of ferroptosis, representing a promising therapeutic target for many diseases related to ferroptotic death.


Assuntos
Araquidonato 15-Lipoxigenase , Fosfatidiletanolaminas , Fosfatidiletanolaminas/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Morte Celular , Fosfolipídeos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Peroxidação de Lipídeos
6.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542532

RESUMO

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Assuntos
Ferroptose/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Animais de Doenças , Feminino , Fosfolipases A2 do Grupo VI/fisiologia , Humanos , Ferro/metabolismo , Leucotrienos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Doença de Parkinson/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Ratos , Ratos Endogâmicos Lew
7.
Proc Natl Acad Sci U S A ; 117(44): 27319-27328, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087576

RESUMO

The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.


Assuntos
Ferroptose/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Trofoblastos/metabolismo , Animais , Feminino , Glutationa Peroxidase/metabolismo , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/fisiologia , Humanos , Ferro/metabolismo , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Knockout , Fosfatidiletanolaminas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 117(25): 14376-14385, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513718

RESUMO

Temporally harmonized elimination of damaged or unnecessary organelles and cells is a prerequisite of health. Under Type 2 inflammatory conditions, human airway epithelial cells (HAECs) generate proferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamines (HpETE-PEs) as proximate death signals. Production of 15-HpETE-PE depends on activation of 15-lipoxygenase-1 (15LO1) in complex with PE-binding protein-1 (PEBP1). We hypothesized that cellular membrane damage induced by these proferroptotic phospholipids triggers compensatory prosurvival pathways, and in particular autophagic pathways, to prevent cell elimination through programmed death. We discovered that PEBP1 is pivotal to driving dynamic interactions with both proferroptotic 15LO1 and the autophagic protein microtubule-associated light chain-3 (LC3). Further, the 15LO1-PEBP1-generated ferroptotic phospholipid, 15-HpETE-PE, promoted LC3-I lipidation to stimulate autophagy. This concurrent activation of autophagy protects cells from ferroptotic death and release of mitochondrial DNA. Similar findings are observed in Type 2 Hi asthma, where high levels of both 15LO1-PEBP1 and LC3-II are seen in HAECs, in association with low bronchoalveolar lavage fluid mitochondrial DNA and more severe disease. The concomitant activation of ferroptosis and autophagy by 15LO1-PEBP1 complexes and their hydroperoxy-phospholipids reveals a pathobiologic pathway relevant to asthma and amenable to therapeutic targeting.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Asma/imunologia , Autofagia/imunologia , Células Epiteliais/patologia , Ferroptose/imunologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Adulto , Animais , Asma/diagnóstico , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Sobrevivência Celular/imunologia , Células Epiteliais/imunologia , Feminino , Técnicas de Inativação de Genes , Humanos , Ácidos Hidroxieicosatetraenoicos/imunologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Interleucina-13/imunologia , Interleucina-13/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Proteína de Ligação a Fosfatidiletanolamina/genética , Fosfatidiletanolaminas/imunologia , Fosfatidiletanolaminas/metabolismo , Cultura Primária de Células , Ligação Proteica/imunologia , Índice de Gravidade de Doença
9.
Hepatology ; 73(3): 1176-1193, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32438524

RESUMO

BACKGROUND AND AIMS: Iron is essential yet also highly chemically reactive and potentially toxic. The mechanisms that allow cells to use iron safely are not clear; defects in iron management are a causative factor in the cell-death pathway known as ferroptosis. Poly rC binding protein 1 (PCBP1) is a multifunctional protein that serves as a cytosolic iron chaperone, binding and transferring iron to recipient proteins in mammalian cells. Although PCBP1 distributes iron in cells, its role in managing iron in mammalian tissues remains open for study. The liver is highly specialized for iron uptake, utilization, storage, and secretion. APPROACH AND RESULTS: Mice lacking PCBP1 in hepatocytes exhibited defects in liver iron homeostasis with low levels of liver iron, reduced activity of iron enzymes, and misregulation of the cell-autonomous iron regulatory system. These mice spontaneously developed liver disease with hepatic steatosis, inflammation, and degeneration. Transcriptome analysis indicated activation of lipid biosynthetic and oxidative-stress response pathways, including the antiferroptotic mediator, glutathione peroxidase type 4. Although PCBP1-deleted livers were iron deficient, dietary iron supplementation did not prevent steatosis; instead, dietary iron restriction and antioxidant therapy with vitamin E prevented liver disease. PCBP1-deleted hepatocytes exhibited increased labile iron and production of reactive oxygen species (ROS), were hypersensitive to iron and pro-oxidants, and accumulated oxidatively damaged lipids because of the reactivity of unchaperoned iron. CONCLUSIONS: Unchaperoned iron in PCBP1-deleted mouse hepatocytes leads to production of ROS, resulting in lipid peroxidation (LPO) and steatosis in the absence of iron overload. The iron chaperone activity of PCBP1 is therefore critical for limiting the toxicity of cytosolic iron and may be a key factor in preventing the LPO that triggers the ferroptotic cell-death pathway.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fígado Gorduroso/etiologia , Compostos de Ferro/metabolismo , Peroxidação de Lipídeos , Metalochaperonas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Knockout , Estresse Oxidativo
10.
Nat Chem Biol ; 16(3): 278-290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080625

RESUMO

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO•-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis. Genetic or pharmacologic depletion/inactivation of iNOS confers sensitivity on M1 cells, whereas NO• donors empower resistance of M2 cells to ferroptosis. In vivo, M1 phagocytes, in comparison to M2 phagocytes, exert higher resistance to pharmacologically induced ferroptosis. This resistance is diminished in iNOS-deficient cells in the pro-inflammatory conditions of brain trauma or the tumour microenvironment. The nitroxygenation of eicosatetraenoyl (ETE)-PE intermediates and oxidatively truncated species by NO• donors and/or suppression of NO• production by iNOS inhibitors represent a novel redox mechanism of regulation of ferroptosis in pro-inflammatory conditions.


Assuntos
Ferroptose/fisiologia , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/fisiologia , Morte Celular , Feminino , Ferro/metabolismo , Ferro/fisiologia , Leucotrienos/metabolismo , Peroxidação de Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(2): 650-659, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584104

RESUMO

Neuritic retraction in the absence of overt neuronal death is a shared feature of normal aging and neurodegenerative disorders, but the intracellular mechanisms modulating this process are not understood. We propose that cumulative distal mitochondrial protein damage results in impaired protein import, leading to mitochondrial dysfunction and focal activation of the canonical apoptosis pathway in neurites. This is a controlled process that may not lead to neuronal death and, thus, we term this phenomenon "neuritosis." Consistent with our hypothesis, we show that in primary cerebrocortical neurons, mitochondrial distance from the soma correlates with increased mitochondrial protein damage, PINK1 accumulation, reactive oxygen species production, and decreased mitochondrial membrane potential and depolarization threshold. Furthermore, we demonstrate that the distance-dependent mitochondrial membrane potential gradient exists in vivo in mice. We demonstrate that impaired distal mitochondria have a lower threshold for focal/nonlethal neuritic caspase-3 activation in normal neurons that is exacerbated in aging, stress, and neurodegenerative conditions, thus delineating a fundamental mechanistic underpinning for synaptic vulnerability.


Assuntos
Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Neuritos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
J Biol Chem ; 295(38): 13393-13406, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732285

RESUMO

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Proliferação de Células , Neoplasias Pulmonares/enzimologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias
13.
Angew Chem Int Ed Engl ; 60(21): 11784-11788, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33684237

RESUMO

Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 µm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol µmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.


Assuntos
Ferroptose/fisiologia , Peroxidação de Lipídeos/fisiologia , Fosfatidiletanolaminas/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Carbolinas/farmacologia , Linhagem Celular , Ferroptose/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Espectrometria de Massa de Íon Secundário/métodos
14.
Nat Chem Biol ; 14(5): 507-515, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610484

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death caused by the failure of the glutathione-dependent lipid-peroxide-scavenging network. FINO2 is an endoperoxide-containing 1,2-dioxolane that can initiate ferroptosis selectively in engineered cancer cells. We investigated the mechanism and structural features necessary for ferroptosis initiation by FINO2. We found that FINO2 requires both an endoperoxide moiety and a nearby hydroxyl head group to initiate ferroptosis. In contrast to previously described ferroptosis inducers, FINO2 does not inhibit system xc- or directly target the reducing enzyme GPX4, as do erastin and RSL3, respectively, nor does it deplete GPX4 protein, as does FIN56. Instead, FINO2 both indirectly inhibits GPX4 enzymatic function and directly oxidizes iron, ultimately causing widespread lipid peroxidation. These findings suggest that endoperoxides such as FINO2 can initiate a multipronged mechanism of ferroptosis.


Assuntos
Apoptose , Glutationa Peroxidase/fisiologia , Ferro/química , Animais , Carbolinas/química , Linhagem Celular Tumoral , Colorimetria , Dioxolanos/química , Retículo Endoplasmático/metabolismo , Glutationa/química , Glutationa Peroxidase/química , Homeostase , Humanos , Peroxidação de Lipídeos , Camundongos , Microssomos/metabolismo , NADP/química , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Piperazinas/química , Engenharia de Proteínas , Relação Estrutura-Atividade
15.
Nat Chem Biol ; 13(1): 91-98, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842070

RESUMO

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.


Assuntos
Apoptose , Coenzima A Ligases/metabolismo , Glutationa Peroxidase/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/deficiência , Feminino , Glutationa Peroxidase/deficiência , Humanos , Hipoglicemiantes/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Necrose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Tiazolidinedionas/farmacologia
16.
Nat Chem Biol ; 13(1): 81-90, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842066

RESUMO

Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.


Assuntos
Ácido Araquidônico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfolipídeos/metabolismo , Animais , Ácido Araquidônico/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Linhagem Celular , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/deficiência , Coenzima A Ligases/metabolismo , Ácidos Graxos Insaturados/antagonistas & inibidores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Immunology ; 153(3): 342-356, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28940384

RESUMO

Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal ß-oxidation during macrophage activation. In this study, we show that peroxisomal ß-oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal ß-oxidation in macrophages, we used Mfp2-/- BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal ß-oxidation in Mfp2-/- BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2-/- macrophages led to decreased inflammatory activation of Mfp2-/- BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2-/- macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal ß-oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization.


Assuntos
Homeostase/imunologia , Inflamação/imunologia , Lipídeos/imunologia , Macrófagos/imunologia , Animais , Citocinas/imunologia , Ativação de Macrófagos/imunologia , Camundongos , Monócitos/imunologia , Neutrófilos/imunologia , Oxirredução , Fosforilação Oxidativa , Fenótipo
18.
J Am Chem Soc ; 140(51): 17835-17839, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30525572

RESUMO

sn2-15-Hydroperoxy-eicasotetraenoyl-phosphatidylethanolamines ( sn2-15-HpETE-PE) generated by mammalian 15-lipoxygenase/phosphatidylethanolamine binding protein-1 (15-LO/PEBP1) complex is a death signal in a recently identified type of programmed cell demise, ferroptosis. How the enzymatic complex selects sn2-ETE-PE as the substrate among 1 of ∼100 total oxidizable membrane PUFA phospholipids is a central, yet unresolved question. To unearth the highly selective and specific mechanisms of catalytic competence, we used a combination of redox lipidomics, mutational and computational structural analysis to show they stem from (i) reactivity toward readily accessible hexagonally organized membrane sn2-ETE-PEs, (ii) relative preponderance of sn2-ETE-PE species vs other sn2-ETE-PLs, and (iii) allosteric modification of the enzyme in the complex with PEBP1. This emphasizes the role of enzymatic vs random stochastic free radical reactions in ferroptotic death signaling.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Morte Celular/fisiologia , Fosfatidiletanolaminas/metabolismo , Animais , Araquidonato 15-Lipoxigenase/química , Catálise , Linhagem Celular , Camundongos , Mutação , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosfatidiletanolaminas/química , Especificidade por Substrato
19.
J Cell Sci ; 129(1): 51-64, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604221

RESUMO

Cardiolipin (also known as PDL6) is an indispensable lipid required for mitochondrial respiration that is generated through de novo synthesis and remodeling. Here, the cardiolipin remodeling enzyme, acyl-CoA:lysocardiolipin-acyltransferase-1 (Alcat1; SwissProt ID, Q6UWP7) is destabilized in epithelia by lipopolysaccharide (LPS) impairing mitochondrial function. Exposure to LPS selectively decreased levels of carbon 20 (C20)-containing cardiolipin molecular species, whereas the content of C18 or C16 species was not significantly altered, consistent with decreased levels of Alcat1. Alcat1 is a labile protein that is lysosomally degraded by the ubiquitin E3 ligase Skp-Cullin-F-box containing the Fbxo28 subunit (SCF-Fbxo28) that targets Alcat1 for monoubiquitylation at residue K183. Interestingly, K183 is also an acetylation-acceptor site, and acetylation conferred stability to the enzyme. Histone deacetylase 2 (HDAC2) interacted with Alcat1, and expression of a plasmid encoding HDAC2 or treatment of cells with LPS deacetylated and destabilized Alcat1, whereas treatment of cells with a pan-HDAC inhibitor increased Alcat1 levels. Alcat1 degradation was partially abrogated in LPS-treated cells that had been silenced for HDAC2 or treated with MLN4924, an inhibitor of Cullin-RING E3 ubiquitin ligases. Thus, LPS increases HDAC2-mediated Alcat1 deacetylation and facilitates SCF-Fbxo28-mediated disposal of Alcat1, thus impairing mitochondrial integrity.


Assuntos
Aciltransferases/metabolismo , Epitélio/metabolismo , Lipopolissacarídeos/farmacologia , Mitocôndrias/enzimologia , Oxigênio/metabolismo , Proteólise/efeitos dos fármacos , Animais , Cardiolipinas/metabolismo , Linhagem Celular , Epitélio/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Lisina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Modelos Biológicos , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
20.
Biochem Biophys Res Commun ; 482(3): 482-490, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212735

RESUMO

High fidelity of biological systems is frequently achieved by duplication of the essential intracellular machineries or, removal of the entire cell, which becomes unnecessary or even harmful in altered physiological environments. Carefully controlled removal of these cells, without damaging normal cells, requires precise signaling, and is critical to maintaining homeostasis. This review describes how two anionic phospholipids - phosphatidylserine (PS) and cardiolipin (CL) - residing in distinct compartments of the cell, signal removal of "the unnecessary" using several uniform principles. One of these principles is realized by collapse of inherent transmembrane asymmetry and the externalization of the signal on the outer membrane surface - mitochondria for CL and the plasma membrane for PS - to trigger mitophagy and phagocytosis, respectively. Release from damaged cells of intracellular structures with externalized CL or externalized PS triggers their elimination by phagocytosis. Another of these principles is realized by oxidation of polyunsaturated species of CL and PS. Highly specific oxidation of CL by cytochrome c serves as a signal for mitochondria-dependent apoptosis, while oxidation of externalized PS improves its effectiveness to trigger phagocytosis of effete cells.


Assuntos
Fosfolipídeos/metabolismo , Animais , Apoptose , Cardiolipinas/metabolismo , Espaço Extracelular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Mitofagia , Oxirredução , Fagocitose , Fosfatidilserinas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA