Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(4): 72, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952017

RESUMO

KEY MESSAGE: Here, we provide an updated set of guidelines for naming genes in wheat that has been endorsed by the wheat research community. The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance. To accommodate these developments, we present an updated set of guidelines for gene nomenclature in wheat. These guidelines can be used to describe loci identified based on morphological or phenotypic features or to name genes based on sequence information, such as similarity to genes characterised in other species or the biochemical properties of the encoded protein. The updated guidelines provide a flexible system that is not overly prescriptive but provides structure and a common framework for naming genes in wheat, which may be extended to related cereal species. We propose these guidelines be used henceforth by the wheat research community to facilitate integration of data from independent studies and allow broader and more efficient use of text and data mining approaches, which will ultimately help further accelerate wheat research and breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Fenótipo , Genes de Plantas , Grão Comestível/genética
2.
Theor Appl Genet ; 130(1): 91-107, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27665367

RESUMO

KEY MESSAGE: Phenotyping and mapping data reveal that chromosome intervals containing eyespot resistance genes Pch1 and Pch2 on 7D and 7A, respectively, do not overlap, and thus, these genes are not homoeloci. Eyespot is a stem-base fungal disease of cereals growing in temperate regions. Two main resistances are currently available for use in wheat. Pch1 is a potent single major gene transferred to wheat from Aegilops ventricosa and located on the distal end of chromosome 7D. Pch2, a moderate resistance deriving from Cappelle Desprez, is located at the end of 7AL. The relative positions of Pch1 and Pch2 on 7D and 7A, respectively, suggest that they are homoeoloci. A single seed decent recombinant F7 population was used to refine the position of Pch2 on 7A. New markers designed to 7D also allowed the position of Pch1 to be further defined. We exploited the syntenic relationship between Brachypodium distachyon and wheat to develop 7A and 7D specific KASP markers tagging inter-varietal and interspecific SNPs and allow the comparison of the relative positions of Pch1 and Pch2 on 7D and 7A. Together, phenotyping and mapping data reveal that the intervals containing Pch1 and Pch2 do not overlap, and thus, they cannot be considered homoeloci. Using this information, we analysed two durum wheat lines carrying Pch1 on 7A to determine whether the Ae.ventricosa introgression extended into the region associated with Pch2. This identified that the introgression is distal to Pch2 on 7A, providing further evidence that the genes are not homoeoloci. However, it is feasible to use this material to pyramid Pch1 and Pch2 on 7A in a tetraploid background and also to increase the copy number of Pch1 in combination with Pch2 in a hexaploid background.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Ascomicetos , Brachypodium/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Marcadores Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sintenia , Triticum/microbiologia
3.
Theor Appl Genet ; 126(7): 1793-808, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23558983

RESUMO

Hexaploid bread wheat evolved from a rare hybridisation, which resulted in a loss of genetic diversity in the wheat D-genome with respect to the ancestral donor, Aegilops tauschii. Novel genetic variation can be introduced into modern wheat by recreating the above hybridisation; however, the information associated with the Ae. tauschii accessions in germplasm collections is limited, making rational selection of accessions into a re-synthesis programme difficult. We describe methodologies to identify novel diversity from Ae. tauschii accessions that combines Bayesian analysis of genotypic data, sub-species diversity and geographic information that summarises variation in climate and habitat at the collection point for each accession. Comparisons were made between diversity discovered amongst a panel of Ae. tauschii accessions, bread wheat varieties and lines from the CIMMYT synthetic hexaploid wheat programme. The selection of Ae. tauschii accessions based on differing approaches had significant effect on diversity within each set. Our results suggest that a strategy that combines several criteria will be most effective in maximising the sampled variation across multiple parameters. The analysis of multiple layers of variation in ex situ Ae. tauschii collections allows for an informed and rational approach to the inclusion of wild relatives into crop breeding programmes.


Assuntos
Variação Genética , Triticum/genética , Teorema de Bayes , Clima , Meio Ambiente , Genótipo , Hibridização Genética , Fenótipo , Poaceae/genética
4.
Nutr Bull ; 44(1): 53-59, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31007606

RESUMO

Wheat is the staple food crop in temperate countries and increasingly consumed in developing countries, displacing traditional foods. However, wheat products are typically low in bioavailable iron and zinc, contributing to deficiencies in these micronutrients in countries where wheat is consumed as a staple food. Two factors contribute to the low contents of bioavailable iron and zinc in wheat: the low concentrations of these minerals in white flour, which is most widely consumed, and the presence of phytates in mineral-rich bran fractions. Although high zinc types of wheat have been developed by conventional plant breeding (biofortification), this approach has failed for iron. However, studies in wheat and other cereals have shown that transgenic (also known as genetically modified; GM) strategies can be used to increase the contents of iron and zinc in white flour, by converting the starchy endosperm tissue into a 'sink' for minerals. Although such strategies currently have low acceptability, greater understanding of the mechanisms which control the transport and deposition of iron and zinc in the developing grain should allow similar effects to be achieved by exploiting naturally induced genetic variation. When combined with conventional biofortification and innovative processing, this approach should provide increased mineral bioavailability in a range of wheat products, from white flour to wholemeal.

5.
Science ; 361(6403)2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30115782

RESUMO

The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world's major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Poliploidia , Transcrição Gênica , Triticum/genética , Pão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Planta , RNA de Plantas/genética , Análise de Sequência de RNA , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA