Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 8140-8145, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610296

RESUMO

Transistors realized on the 2D antiferromagnetic semiconductor CrPS4 exhibit large magnetoconductance due to magnetic-field-induced changes in the magnetic state. The microscopic mechanism coupling the conductance and magnetic state is not understood. We identify it by analyzing the evolution of the parameters determining the transistor behavior─carrier mobility and threshold voltage─with temperature and magnetic field. For temperatures T near the Néel temperature TN, the magnetoconductance originates from a mobility increase due to the applied magnetic field that reduces spin fluctuation induced disorder. For T ≪ TN, instead, what changes is the threshold voltage, so that increasing the field at fixed gate voltage increases the density of accumulated electrons. The phenomenon is explained by a conduction band-edge shift correctly predicted by the ab initio calculations. Our results demonstrate that the band structure of CrPS4 depends on its magnetic state and reveal a mechanism for magnetoconductance that had not been identified earlier.

2.
Nano Lett ; 22(15): 6149-6155, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867517

RESUMO

We perform magnetotransport experiments on VI3 multilayers to investigate the relation between ferromagnetism in bulk and in exfoliated layers. The magnetoconductance measured on field-effect transistors and tunnel barriers shows that the Curie temperature of exfoliated multilayers is TC = 57 K, larger than in bulk (TC,bulk = 50 K). Below T ≈ 40 K, we observe an unusual evolution of the tunneling magnetoconductance, analogous to the phenomenology observed in bulk. Comparing the magnetoconductance measured for fields applied in- or out-of-plane corroborates the analogy, allows us to determine that the orientation of the easy-axis in multilayers is similar to that in bulk, and suggests that the in-plane component of the magnetization points in different directions in different layers. Besides establishing that the magnetic state of bulk and multilayers are similar, our experiments illustrate the complementarity of magnetotransport and magneto-optical measurements to probe magnetism in 2D materials.

3.
Nat Mater ; 19(3): 299-304, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32015532

RESUMO

Van der Waals (vdW) interfaces based on 2D materials are promising for optoelectronics, as interlayer transitions between different compounds allow tailoring of the spectral response over a broad range. However, issues such as lattice mismatch or a small misalignment of the constituent layers can drastically suppress electron-photon coupling for these interlayer transitions. Here, we engineered type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the Γ point, and thus avoid any momentum mismatch. We found that these van der Waals interfaces exhibit radiative optical transitions irrespective of the lattice constant, the rotational and/or translational alignment of the two layers or whether the constituent materials are direct or indirect gap semiconductors. Being robust and of general validity, our results broaden the scope of future optoelectronics device applications based on two-dimensional materials.

4.
Nano Lett ; 20(2): 1322-1328, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874038

RESUMO

The assembly of suitably designed van der Waals (vdW) heterostructures represents a new approach to produce artificial systems with engineered electronic properties. Here, we apply this strategy to realize synthetic semimetals based on vdW interfaces formed by two different semiconductors. Guided by existing ab initio calculations, we select WSe2 and SnSe2 mono- and multilayers to assemble vdW interfaces and demonstrate the occurrence of semimetallicity by means of different transport experiments. Semimetallicity manifests itself in a finite minimum conductance upon sweeping the gate over a large range in ionic liquid gated devices, which also offer spectroscopic capabilities enabling the quantitative determination of the band overlap. The semimetallic state is additionally revealed in Hall effect measurements by the coexistence of electrons and holes, observed by either looking at the evolution of the Hall slope with sweeping the gate voltage or with lowering temperature. Finally, semimetallicity results in the low-temperature metallic conductivity of interfaces of two materials that are themselves insulating. These results demonstrate the possibility to implement a state of matter that had not yet been realized in vdW interfaces and represent a first step toward using these interfaces to engineer topological or excitonic insulating states.

5.
Nano Lett ; 19(1): 554-560, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30570259

RESUMO

Two-dimensional crystals of semi-metallic van der Waals materials hold much potential for the realization of novel phases, as exemplified by the recent discoveries of a polar metal in few-layer 1T'-WTe2 and of a quantum spin Hall state in monolayers of the same material. Understanding these phases is particularly challenging because little is known from experiments about the momentum space electronic structure of ultrathin crystals. Here, we report direct electronic structure measurements of exfoliated mono-, bi-, and few-layer 1T'-WTe2 by laser-based microfocus angle-resolved photoemission. This is achieved by encapsulating with monolayer graphene a flake of WTe2 comprising regions of different thickness. Our data support the recent identification of a quantum spin Hall state in monolayer 1T'-WTe2 and reveal strong signatures of the broken inversion symmetry in the bilayer. We finally discuss the sensitivity of encapsulated samples to contaminants following exposure to ambient atmosphere.

6.
Nano Lett ; 18(8): 5146-5152, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001136

RESUMO

Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need to understand at a quantitative level how the interfacial properties are determined by the properties of the constituent 2D materials. We address this problem by studying the transport and optoelectronic response of two different interfaces based on transition-metal dichalcogenide monolayers, namely WSe2-MoSe2 and WSe2-MoS2. By exploiting the spectroscopic capabilities of ionic liquid gated transistors, we show how the conduction and valence bands of the individual monolayers determine the bands of the interface, and we establish quantitatively (directly from the measurements) the energetic alignment of the bands in the different materials as well as the magnitude of the interfacial band gap. Photoluminescence and photocurrent measurements allow us to conclude that the band gap of the WSe2-MoSe2 interface is direct in k space, whereas the gap of WSe2/MoS2 is indirect. For WSe2/MoSe2, we detect the light emitted from the decay of interlayer excitons and determine experimentally their binding energy using the values of the interfacial band gap extracted from transport measurements. The technique that we employed to reach this conclusion demonstrates a rather-general strategy for characterizing quantitatively the interfacial properties in terms of the properties of the constituent atomic layers. The results presented here further illustrate how van der Waals interfaces of two distinct 2D semiconducting materials are composite systems that truly behave as artificial semiconductors, the properties of which can be deterministically defined by the selection of the appropriate constituent semiconducting monolayers.

7.
Nano Lett ; 17(9): 5719-5725, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829605

RESUMO

The band structure of many semiconducting monolayer transition metal dichalcogenides (TMDs) possesses two degenerate valleys with equal and opposite Berry curvature. It has been predicted that, when illuminated with circularly polarized light, interband transitions generate an unbalanced nonequilibrium population of electrons and holes in these valleys, resulting in a finite Hall voltage at zero magnetic field when a current flows through the system. This is the so-called valley Hall effect that has recently been observed experimentally. Here, we show that this effect is mediated by photogenerated neutral excitons and charged trions and not by interband transitions generating independent electrons and holes. We further demonstrate an experimental strategy, based on wavelength dependent spatial mapping of the Hall voltage, which allows the exciton and trion contributions to the valley Hall effect to be discriminated in the measurement. These results represent a significant step forward in our understanding of the microscopic origin of photoinduced valley Hall effect in semiconducting transition metal dichalcogenides and demonstrate experimentally that composite quasi-particles, such as trions, can also possess a finite Berry curvature.

8.
Nano Lett ; 15(12): 8289-94, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26594892

RESUMO

We realize and investigate ionic liquid gated field-effect transistors (FETs) on large-area MoS2 monolayers grown by chemical vapor deposition (CVD). Under electron accumulation, the performance of these devices is comparable to that of FETs based on exfoliated flakes. FETs on CVD-grown material, however, exhibit clear ambipolar transport, which for MoS2 monolayers had not been reported previously. We exploit this property to estimate the bandgap Δ of monolayer MoS2 directly from the device transfer curves and find Δ ≈ 2.4-2.7 eV. In the ambipolar injection regime, we observe electroluminescence due to exciton recombination in MoS2, originating from the region close to the hole-injecting contact. Both the observed transport properties and the behavior of the electroluminescence can be consistently understood as due to the presence of defect states at an energy of 250-300 meV above the top of the valence band, acting as deep traps for holes. Our results are of technological relevance, as they show that devices with useful optoelectronic functionality can be realized on large-area MoS2 monolayers produced by controllable and scalable techniques.

9.
Nano Lett ; 14(4): 2019-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24669957

RESUMO

We have realized ambipolar ionic liquid gated field-effect transistors based on WS2 mono- and bilayers, and investigated their opto-electronic response. A thorough characterization of the transport properties demonstrates the high quality of these devices for both electron and hole accumulation, which enables the quantitative determination of the band gap (Δ1L = 2.14 eV for monolayers and Δ2L = 1.82 eV for bilayers). It also enables the operation of the transistors in the ambipolar injection regime with electrons and holes injected simultaneously at the two opposite contacts of the devices in which we observe light emission from the FET channel. A quantitative analysis of the spectral properties of the emitted light, together with a comparison with the band gap values obtained from transport, show the internal consistency of our results and allow a quantitative estimate of the excitonic binding energies to be made. Our results demonstrate the power of ionic liquid gating in combination with nanoelectronic systems, as well as the compatibility of this technique with optical measurements on semiconducting transition metal dichalcogenides. These findings further open the way to the investigation of the optical properties of these systems in a carrier density range much broader than that explored until now.

10.
Opt Express ; 21(21): 24736-41, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150317

RESUMO

We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

11.
Adv Mater ; 35(18): e2211993, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812653

RESUMO

Ionic gating is a powerful technique to realize field-effect transistors (FETs) enabling experiments not possible otherwise. So far, ionic gating has relied on the use of top electrolyte gates, which pose experimental constraints and make device fabrication complex. Promising results obtained recently in FETs based on solid-state electrolytes remain plagued by spurious phenomena of unknown origin, preventing proper transistor operation, and causing limited control and reproducibility. Here, a class of solid-state electrolytes for gating (Lithium-ion conducting glass-ceramics, LICGCs) is explored, the processes responsible for the spurious phenomena and irreproducible behavior are identified, and properly functioning transistors exhibiting high density ambipolar operation with gate capacitance of ≈ 20   -   50 µ F c m - 2 \[20{\bm{ - }}50\;\mu F c{m^{{\bm{ - }}2}}\] (depending on the polarity of the accumulated charges) are demonstrated. Using 2D semiconducting transition-metal dichalcogenides, the ability to implement ionic-gate spectroscopy to determine the semiconducting bandgap, and to accumulate electron densities above 1014 cm-2 are demostrated, resulting in gate-induced superconductivity in MoS2 multilayers. As LICGCs are implemented in a back-gate configuration, they leave the surface of the material exposed, enabling the use of surface-sensitive techniques (such as scanning tunneling microscopy and photoemission spectroscopy) impossible so far in ionic-gated devices. They also allow double ionic gated devices providing independent control of charge density and electric field.

12.
Adv Mater ; 35(30): e2211653, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37098224

RESUMO

Using field-effect transistors (FETs) to explore atomically thin magnetic semiconductors with transport measurements is difficult, because the very narrow bands of most 2D magnetic semiconductors cause carrier localization, preventing transistor operation. Here, it is shown that exfoliated layers of CrPS4 -a 2D layered antiferromagnetic semiconductor whose bandwidth approaches 1 eV-allow the realization of FETs that operate properly down to cryogenic temperature. Using these devices, conductance measurements as a function of temperature and magnetic field are performed to determine the full magnetic phase diagram, which includes a spin-flop and a spin-flip phase. The magnetoconductance, which depends strongly on gate voltage, is determined. reaching values as high as 5000% near the threshold for electron conduction. The gate voltage also allows the magnetic states to be tuned, despite the relatively large thickness of the CrPS4 multilayers employed in the study. The results show the need to employ 2D magnetic semiconductors with sufficiently large bandwidth to realize properly functioning transistors, and identify a candidate material to realize a fully gate-tunable half-metallic conductor.

13.
Nat Commun ; 14(1): 4969, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591960

RESUMO

In twisted two-dimensional (2D) magnets, the stacking dependence of the magnetic exchange interaction can lead to regions of ferromagnetic and antiferromagnetic interlayer order, separated by non-collinear, skyrmion-like spin textures. Recent experimental searches for these textures have focused on CrI3, known to exhibit either ferromagnetic or antiferromagnetic interlayer order, depending on layer stacking. However, the very strong uniaxial anisotropy of CrI3 disfavors smooth non-collinear phases in twisted bilayers. Here, we report the experimental observation of three distinct magnetic phases-one ferromagnetic and two antiferromagnetic-in exfoliated CrBr3 multilayers, and reveal that the uniaxial anisotropy is significantly smaller than in CrI3. These results are obtained by magnetoconductance measurements on CrBr3 tunnel barriers and Raman spectroscopy, in conjunction with density functional theory calculations, which enable us to identify the stackings responsible for the different interlayer magnetic couplings. The detection of all locally stable magnetic states predicted to exist in CrBr3 and the excellent agreement found between theory and experiments, provide complete information on the stacking-dependent interlayer exchange energy and establish twisted bilayer CrBr3 as an ideal system to deterministically create non-collinear magnetic phases.

14.
Nat Nanotechnol ; 17(10): 1078-1083, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953537

RESUMO

Perpendicular electric fields can tune the electronic band structure of atomically thin semiconductors. In bilayer graphene, which is an intrinsic zero-gap semiconductor, a perpendicular electric field opens a finite bandgap. So far, however, the same principle could not be applied to control the properties of a broader class of 2D materials because the required electric fields are beyond reach in current devices. To overcome this limitation, we design double ionic gated transistors that enable the application of large electric fields of up to 3 V nm-1. Using such devices, we continuously suppress the bandgap of few-layer semiconducting transition metal dichalcogenides (that is, bilayer to heptalayer WSe2) from 1.6 V to zero. Our results illustrate an excellent level of control of the band structure of 2D semiconductors.

15.
Adv Mater ; 34(16): e2109759, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35191570

RESUMO

Electronic transport through exfoliated multilayers of CrSBr, a 2D semiconductor of interest because of its magnetic properties, is investigated. An extremely pronounced anisotropy manifesting itself in qualitative and quantitative differences of all quantities measured along the in-plane a and b crystallographic directions is found. In particular, a qualitatively different dependence of the conductivities σa and σb on temperature and gate voltage, accompanied by orders of magnitude differences in their values (σb /σa  ≈ 3 × 102  to 105 at low temperature and negative gate voltage) are observed, together with a different behavior of the longitudinal magnetoresistance in the two directions and the complete absence of the Hall effect in transverse resistance measurements. These observations appear not to be compatible with a description in terms of conventional band transport of a 2D doped semiconductor. The observed phenomenology-and unambiguous signatures of a 1D van Hove singularity detected in energy-resolved photocurrent measurements-indicate that electronic transport through CrSBr multilayers is better interpreted by considering the system as formed by weakly and incoherently coupled 1D wires, than by conventional 2D band transport. It is concluded that CrSBr is the first 2D semiconductor to show distinctly quasi-1D electronic transport properties.

16.
Nat Commun ; 13(1): 3917, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798736

RESUMO

Light-emitting electronic devices are ubiquitous in key areas of current technology, such as data communications, solid-state lighting, displays, and optical interconnects. Controlling the spectrum of the emitted light electrically, by simply acting on the device bias conditions, is an important goal with potential technological repercussions. However, identifying a material platform enabling broad electrical tuning of the spectrum of electroluminescent devices remains challenging. Here, we propose light-emitting field-effect transistors based on van der Waals interfaces of atomically thin semiconductors as a promising class of devices to achieve this goal. We demonstrate that large spectral changes in room-temperature electroluminescence can be controlled both at the device assembly stage -by suitably selecting the material forming the interfaces- and on-chip, by changing the bias to modify the device operation point. Even though the precise relation between device bias and kinetics of the radiative transitions remains to be understood, our experiments show that the physical mechanism responsible for light emission is robust, making these devices compatible with simple large areas device production methods.

17.
Nat Commun ; 12(1): 6659, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795253

RESUMO

Recent experiments on van der Waals antiferromagnets have shown that measuring the temperature (T) and magnetic field (H) dependence of the conductance allows their magnetic phase diagram to be mapped. Similarly, experiments on ferromagnetic CrBr3 barriers enabled the Curie temperature to be determined at H = 0, but a precise interpretation of the magnetoconductance data at H ≠ 0 is conceptually more complex, because at finite H there is no well-defined phase boundary. Here we perform systematic transport measurements on CrBr3 barriers and show that the tunneling magnetoconductance depends on H and T exclusively through the magnetization M(H, T) over the entire temperature range investigated. The phenomenon is reproduced by the spin-dependent Fowler-Nordheim model for tunneling, and is a direct manifestation of the spin splitting of the CrBr3 conduction band. Our analysis unveils a new approach to probe quantitatively different properties of atomically thin ferromagnetic insulators related to their magnetization by performing simple conductance measurements.

18.
ACS Nano ; 12(3): 2669-2676, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29481047

RESUMO

Ideal monolayers of common semiconducting transition-metal dichalcogenides (TMDCs) such as MoS2, WS2, MoSe2, and WSe2 possess many similar electronic properties. As it is the case for all semiconductors, however, the physical response of these systems is strongly determined by defects in a way specific to each individual compound. Here we investigate the ability of exfoliated monolayers of these TMDCs to support high-quality, well-balanced ambipolar conduction, which has been demonstrated for WS2, MoSe2, and WSe2, but not for MoS2. Using ionic-liquid gated transistors, we show that, contrary to WS2, MoSe2, and WSe2, hole transport in exfoliated MoS2 monolayers is systematically anomalous, exhibiting a maximum in conductivity at negative gate voltage ( V G) followed by a suppression of up to 100 times upon further increasing V G. To understand the origin of this difference, we have performed a series of experiments including the comparison of hole transport in MoS2 monolayers and thicker multilayers, in exfoliated and CVD-grown monolayers, as well as gate-dependent optical measurements (Raman and photoluminescence) and scanning tunneling imaging and spectroscopy. In agreement with existing ab initio calculations, the results of all these experiments are consistently explained in terms of defects associated with chalcogen vacancies that only in MoS2 monolayers, but not in thicker MoS2 multilayers nor in monolayers of the other common semiconducting TMDCs, create in-gap states near the top of the valence band that act as strong hole traps. Our results demonstrate the importance of studying systematically how defects determine the properties of 2D semiconducting materials and of developing methods to control them.

20.
Nat Commun ; 9(1): 2516, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955066

RESUMO

Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in Cr2Ge2Te6 and CrI3. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report magneto-transport measurements on exfoliated CrI3 crystals. We find that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10,000%. The evolution of the magnetoresistance with magnetic field and temperature reveals that the phenomenon originates from multiple transitions to different magnetic states, whose possible microscopic nature is discussed on the basis of all existing experimental observations. This observed dependence of the conductance of a tunnel barrier on its magnetic state is a phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA