Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111675, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396007

RESUMO

Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked with five levels of Cd (CdCl2) and remediated with 3% corn-straw derived biochar. After 60 days of lettuce growth, Cd accumulation and enzyme activities in tissues were analyzed. Results showed that biochar increased soil properties (pH, CEC and SOM) compared to un-amended soils, but decreased contents of bioavailable Cd in soil pore-water (Cdpore-water) and BCR extracted Cd (CdFi+Fii). Contents of Cdpore-water were lower in yellow-brown soils than that in red soils. Pearson analysis showed that bioavailable Cd is negatively correlated with soil pH and CEC (p < 0.05). Cd accumulation in lettuce roots and leaves both were decreased by biochar addition, and the established linear equations proved that soil Cdpore-water is the best predictor for Cd accumulation in lettuce roots (r2 = 0.964) and in leaves (r2 = 0.953), followed by CdFi+Fii. Transfer factor (TF) values of Cd from roots to leaves were lower than 1, and slightly better correlated with soil Cdpore-water (r = -0.674, p < 0.01) than CdFi+Fii (r = -0.615, p < 0.01). Aggregated boosted tree (ABT) analyses indicated that soil properties together with Cdpore-water contribute more than 50% to root enzyme activities. Collectively, soil Cdpore-water is a promising predictor of Cd bioavailability, accumulation and toxicity in soil-plant system with biochar addition.


Assuntos
Bioacumulação/efeitos dos fármacos , Cádmio/toxicidade , Carvão Vegetal/química , Lactuca/efeitos dos fármacos , Poluentes do Solo/toxicidade , Disponibilidade Biológica , Transporte Biológico , Cádmio/metabolismo , Lactuca/metabolismo , Modelos Teóricos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/química , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Água/química , Zea mays/química
2.
Ecotoxicol Environ Saf ; 189: 110045, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31816499

RESUMO

Phytotoxicity of cadmium (Cd) and its trophic transfer along a terrestrial food chain have been extensively investigated. However, few studies focused on the role of amendments on the trophic transfer of Cd and related mineral nutrients. In a 60-day pot experiment, soil Cd availability, accumulation of Cd, mineral nutrients (Ca and Si) in lettuce, and subsequent trophic transfer along the lettuce-snail system were investigated with or without 3% (w/w) soil amendment (biochar or micro-hydroxyapatite, µHAP). Soil CaCl2 extractable Cd (CdCaCl2) contents decreased by both amendments. µHAP amended soil increased the Freundlich sorption capacity of Cd2+ to a greater extent (15.9 mmol/kg) than biochar (12.6 mmol/kg). Cd, Ca and Si accumulation in lettuce tissues (roots and shoots) varied with amendment species and soil Cd levels. Linear regression analysis showed that root Cd contents are negatively correlated with root Ca and Si contents (r2 = 0.96, p < 0.05). But no significant correlation between shoot Cd and lettuce Ca and Si contents was found (p > 0.05). After 15 days snail feeding, nearly 90% content of Cd was found in snail viscera, while nearly 95% content of Ca was found in snail shells. Contents of Si distributed equally in snail tissues. Biomagnification of Cd, Ca and Si (TF > 1) was found in lettuce shoot - snail viscera system. Opposite tendency of TF variation between Cd and nutrient elements (Ca and Si) from shoots to snail tissues indicated that µHAP, rather than biochar, amendment is applicable to remediate soil Cd contamination in our study.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Lactuca/efeitos dos fármacos , Minerais/metabolismo , Poluentes do Solo/análise , Solo/química , Animais , Bioacumulação , Cádmio/metabolismo , Cálcio/metabolismo , Cadeia Alimentar , Lactuca/metabolismo , Silício/metabolismo , Caramujos/efeitos dos fármacos , Caramujos/metabolismo , Poluentes do Solo/metabolismo
3.
Environ Monit Assess ; 192(5): 309, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32328811

RESUMO

The distribution and composition of organic pollutants in sediment are affected by the source and regional environment. To understand the characteristics and risk of polybrominated diphenyl ethers (PBDEs) in the area around Taihu Lake, composite sediment samples (n = 41) were collected in rivers around Taihu Lake to explore the level, spatial distribution, and source of PBDEs. The results showed that the most abundant BDE congener in river sediment was BDE209, followed by BDE99 and BDE47, with median values of 48.7, 2.17, and 1.52 ng g-1, respectively. Concentrations of PBDEs in sediments from northern rivers were significantly higher than those from other areas, but the overall risk was at a moderate-lower level compared with research results in other references. Results of principle component analysis (PCA) and source characteristics analysis revealed that most of PBDEs in river sediments around Taihu Lake were mixture of multiple sources, which mainly originated from atmospheric deposition, industrial wastewater, and municipal sewage. TOC showed good correlations with most PBDEs, which implied that PBDE components were influenced by sediment organic matter. Meanwhile, the risk of PBDEs in river sediments in this study area is a moderate-lower level.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Éteres Difenil Halogenados , Medição de Risco , Rios , China , Sedimentos Geológicos/química , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/análise
4.
Crit Rev Food Sci Nutr ; 57(6): 1206-1214, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26065543

RESUMO

Colloids (1-1000-nm particles) in sugarcane/beet juice originate from non-sucrose impurities (polyphenolic colorants, residual soil, polysaccharides) of the plant materials; additional colloids form during the high temperature processing. Colloids are reactive toward aggregation, sorption, desorption, and redox/hydrolysis/thermal transformation reactions. Both Derjaguin-Landau-Verwey-Overbeek (DLVO; van der Waals and electrostatic forces) and non-DLVO (involving hydrophilic colloids) interactions control the stability of colloids in juice. Heteroaggregation causes a range of feedstock and end product problems, including turbidity, viscosity, color, gelling, crystallization, starch ghost, and heat transfer problems. Even after intensive clarification and refining, trace colloidal impurities on white (refined) sugar remain to cause a problem known as acid beverage floc. Acid beverage floc is an example of DLVO-type aggregation of oppositely charged particles at decreased pH. Examples of irreversible aggregates include starch ghost and recalcitrant organomineral composites formed at elevated temperature that resist heat transfer. Fundamental knowledge in aggregation kinetics is necessary to predict the occurrence of undesirable aggregates, as pH, ionic strength, temperature, and sucrose concentration change during the processing of sugarcane/beet juice.


Assuntos
Beta vulgaris/química , Coloides/análise , Manipulação de Alimentos , Sucos de Frutas e Vegetais/análise , Saccharum/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polifenóis/análise , Polissacarídeos/análise , Eletricidade Estática , Sacarose/química
5.
Environ Res ; 150: 182-190, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27295408

RESUMO

Rare earth elements (REEs) are essential raw materials for emerging renewable energy resources and 'smart' electronic devices. Global REE demand is slated to grow at an annual rate of 5% by 2020. This high growth rate will require a steady supply base of REEs in the long run. At present, China is responsible for 85% of global rare earth oxide (REO) production. To overcome this monopolistic supply situation, new strategies and investments are necessary to satisfy domestic supply demands. Concurrently, environmental, economic, and social problems arising from REE mining must be addressed. There is an urgent need to develop efficient REE recycling techniques from end-of-life products, technologies to minimize the amount of REEs required per unit device, and methods to recover them from fly ash or fossil fuel-burning wastes.


Assuntos
Metais Terras Raras/análise , Mineração/métodos , China , Reciclagem
6.
Environ Res ; 151: 304-312, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522568

RESUMO

Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g., perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Aglomeração , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Expiração , Humanos , Pele/metabolismo , Fumar
7.
J Environ Manage ; 169: 184-90, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26751812

RESUMO

Biochar continues to receive worldwide enthusiasm as means of augmenting recalcitrant organic carbon in agricultural soils. Realistic biochar amendment rate (typically less than 1 wt%) in the field scale, and subsequent loss by sizing, rain, and other transport events demand reliable methods to quantify the remaining portions of amended biochar. This study employed fluorescence excitation-emission (EEM) spectrophotometry and parallel factor analysis (PARAFAC) to specifically target pyrogenic dissolved organic carbon (DOC) released by amended biochar during the course of a field trial at Bowling Green, KY experimental site. Toluene/methanol (1:6 v/v) extracts of surface (0-15 cm) soils amended with 21.28 t ha(-1) fast pyrolysis biochar afforded PARAFAC fingerprints representing different degrees of aromaticity. Compared to the control without treatments, biochar treatment (with and without poultry manure or chemical fertilizer) increased the relative contribution of PARAFAC fingerprint attributable to labile polyaromatic DOC structures. Poultry manure or chemical fertilizer alone (without biochar) did not influence the amounts of polyaromatic DOC structures. Existence of biochar could be further validated by the changes in %DOC (relative to the total carbon), fixed C content, and UV absorbance (360 nm), whereas FTIR, %O, and sorption of model agrochemical (deisopropylatrazine) did not reflect the presence of biochar in the soil samples. Developed toluene/methanol-based EEM-PARAFAC technique will provide a sensitive, rapid, and cost-competitive method to validate the long-term carbon sequestration by the biochar soil amendment.


Assuntos
Carbono/química , Carvão Vegetal/química , Monitoramento Ambiental/métodos , Solo/química , Adsorção , Agricultura , Sequestro de Carbono , Fertilizantes , Kentucky , Esterco , Espectrometria de Fluorescência/métodos
8.
J Environ Manage ; 167: 214-27, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26686074

RESUMO

Among the numerous sources of greenhouse gases, emissions of CO2 are considerably affected by changes in the extent and type of land use, e.g., intensive agriculture, deforestation, urbanization, soil erosion, or wetland drainage. As a feasible option to control emissions from the terrestrial ecosystems, the scientific community has explored the possibility of enhancing soil carbon (C) storage capacity. Thus, restoration of damaged lands through conservation tillage, crop rotation, cover cropping, reforestation, sub-soiling of compacted lands, sustainable water management practices, and organic manuring are the major antidotes against attenuation of soil organic C (SOC) stocks. In this research, we focused on the effect of various man-made activities on soil biotic organics (e.g., green-, farm-yard manure, and composts) to understand how C fluxes from various sources contribute to the establishment of a new equilibrium in the terrestrial ecosystems. Although such inputs substitute a portion of chemical fertilizers, they all undergo activities that augment the rate and extent of decay to deplete the SOC bank. Here, we provide perspectives on the balancing factors that control the mineralization rate of organic matter. Our arguments are placed in the background of different land use types and their impacts on forests, agriculture, urbanization, soil erosion, and wetland destruction.


Assuntos
Ciclo do Carbono , Ecossistema , Solo/química , Agricultura , Carbono/análise , Conservação dos Recursos Naturais , Meio Ambiente , Gases , Efeito Estufa , Esterco , Urbanização , Água
9.
Environ Sci Technol ; 49(22): 13294-303, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26461459

RESUMO

Heteroaggregation with indigenous particles is critical to the environmental mobility of engineered nanomaterials (ENM). We studied heteroaggregation of ceria nanoparticles (n-CeO2), as a model for metal oxide ENM, with nanoparticles of pyrogenic carbonaceous material (n-PCM) derived from pecan shell biochar, a model for natural chars and human-made chars used in soil remediation and agriculture. The TEM and STEM images of n-PCM identify both hard and soft particles, both C-rich and C,O,Ca-containing particles (with CaCO3 crystals), both amorphous and "onion-skin" C-rich particles, and traces of nanotubes. Heteroaggregation was evaluated at constant n-CeO2, variable n-PCM concentration by monitoring hydrodynamic diameter by dynamic light scattering and ζ-potential under conditions where n-PCM is "invisible". At pH 5.3, where n-CeO2 and n-PCM are positively and negatively charged, respectively, and each stable to homoaggregation, heteroaggregation is favorable and occurs by a charge neutralization-charge reversal mechanism (CNCR): in this mechanism, primary heteroaggregates that form in the initial stage are stable at low or high n-PCM concentration due to electrostatic repulsion, but unstable at intermediate n-PCM concentration, leading to secondary heteroaggregation. The greatest instability coincides with full charge neutralization. At pH 7.1, where n-CeO2 is neutral and unstable alone, and n-PCM is negative and stable alone, heteroaggregation occurs by a charge-accumulation, core-shell stabilization (CACS) mechanism: n-PCM binds to and forms a negatively charged shell on the neutral surface of the nascent n-CeO2 core, stabilizing the core-shell heteraggregate at a size that decreases with n-PCM concentration. The CNCR and CACS mechanisms give fundamental insight into heteroaggregation between oppositely charged, and between neutral and charged nanoparticles.


Assuntos
Cério/química , Nanopartículas/química , Biomassa , Carbonato de Cálcio/química , Carya/química , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Eletricidade Estática
10.
J Environ Manage ; 151: 443-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25602696

RESUMO

Limited mechanistic knowledge is available on the interaction of biochar with trace elements (Sb and As) that exist predominantly as oxoanions. Soybean stover biochars were produced at 300 °C (SBC300) and 700 °C (SBC700), and characterized by BET, Boehm titration, FT-IR, NMR and Raman spectroscopy. Bound protons were quantified by potentiometric titration, and two acidic sites were used to model biochar by the surface complexation modeling based on Boehm titration and NMR observations. The zero point of charge was observed at pH 7.20 and 7.75 for SBC300 and SBC700, respectively. Neither antimonate (Sb(V)) nor antimonite (Sb(III)) showed ionic strength dependency (0.1, 0.01 and 0.001 M NaNO3), indicating inner sphere complexation. Greater adsorption of Sb(III) and Sb(V) was observed for SBC300 having higher -OH content than SBC700. Sb(III) removal (85%) was greater than Sb(V) removal (68%). Maximum adsorption density for Sb(III) was calculated as 1.88 × 10(-6) mol m(-2). The Triple Layer Model (TLM) successfully described surface complexation of Sb onto soybean stover-derived biochar at pH 4-9, and suggested the formation of monodentate mononuclear and binuclear complexes. Spectroscopic investigations by Raman, FT-IR and XPS further confirmed strong chemisorptive binding of Sb to biochar surfaces.


Assuntos
Antimônio/química , Carvão Vegetal/química , Glycine max , Poluentes do Solo/química , Adsorção , Concentração Osmolar , Espectroscopia de Infravermelho com Transformada de Fourier
11.
PLoS One ; 18(11): e0293317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917645

RESUMO

Domestic production of controlled-release, compost-based, and microbe-enhanced fertilizers is being expanded in the U.S. as a part of rural development. Sugarcane mill mud is a sterilized (≈90°C) agricultural byproduct in surplus that has received interests as a soil amendment in several Southern states, because of its high phosphorus and organic carbon contents. Addition of mill mud to sandy loam significantly increased the nodule formation compared to fertilized and unfertilized controls. Mill mud addition also resulted in pod yields similar to the fertilized control. Though not found in mill mud itself, mill mud additions correlated with an increase in soil Rhizobia as determined by deep 16S rRNA gene sequencing. We hypothesize that Firmicutes in sterilized mill mud induced Rhizobia that in turn enhanced soybean (Glycine max) growth. Collectively, mill mud enhanced the plant growth promoting bacteria when applied to a silt loam, although the relative influence of mill mud-derived bacteria, organic carbon, and nutrients is yet to be determined.


Assuntos
Rhizobium , Saccharum , Solo , Glycine max/microbiologia , Areia , Simbiose , RNA Ribossômico 16S/genética , Carbono
12.
Microbiol Resour Announc ; 12(11): e0056823, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846981

RESUMO

The genomes of 11 bacteria and 3 archaea were assembled from metagenomic DNA extracted from sugarcane mill mud. These metagenome-assembled genomes ranged from 1.79 to 6.45 Mb, with 2,263 to 5,551 predicted proteins, 80.65% to 100% genome completeness, and 43.19% to 68.02% G+C content.

13.
J Environ Qual ; 41(4): 1138-49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751056

RESUMO

Although nutrient-rich manure biochars are expected to be an effective heavy metal stabilizer in agricultural and contaminated soils, systematic studies are lacking to predict the influence of manure variety and pyrolysis temperature on metal-binding potentials. In this study, biochars produced from five manure varieties (dairy, paved feedlot, swine solids, poultry litter, and turkey litter) at two pyrolytic temperatures (350 and 700°C) were examined for the stabilization of Pb, Cu, Ni, and Cd in a weathered, acidic Norfolk loamy sand (fine-loamy, kaolinitic, thermic, Typic Kandiudult). Equilibrium concentrations in the aqueous phase were determined for heavy metals (Cu, Ni, Cd, and Pb) and additional selected elements (Na, P, S, Ca, Mg, Al, and K); these were analyzed by positive matrix factorization to quantitatively determine the factors responsible for the biochar's ability to bind the selected heavy metals in soil. Concurrently with the greatest increase in pH and highest equilibrium Na, S, and K concentrations, poultry litter, turkey litter, and feedlot 700°C biochar exhibited the greatest heavy metal retention. In contrast, manure varieties containing disproportionately high (swine) and low (dairy) ash, P, and other elements were the least effective stabilizers. Regardless of the manure type, proton nuclear magnetic resonance analyses showed the removal of leachable aliphatic and nitrogen-containing heteroaromatic functional groups at the higher (700°C) pyrolysis temperature. Consistently greater Cu retention by the 700°C biochar indicated the mobilization of Cu by 350°C biochar-born dissolved organic carbon; however, the influence of other temperature-dependent biochar characteristics cannot be ruled out.


Assuntos
Carvão Vegetal/química , Esterco/análise , Metais Pesados/química , Solo/química , Animais , Bovinos , Clorofórmio/química , Espectroscopia de Ressonância Magnética , Aves Domésticas , Suínos
14.
PLoS One ; 17(8): e0272013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972931

RESUMO

Sugarcane mill mud/filter cake is an activated sludge-like byproduct from the clarifier of a raw sugar production factory, where cane juice is heated to ≈90°C for 1-2 hr, after the removal of bagasse. Mill mud is enriched with organic carbon, nitrogen, and nutrient minerals; no prior report utilized 16S rRNA gene sequencing to characterize the microbial composition. Mill mud could be applied to agricultural fields as biofertilizer to replace or supplement chemical fertilizers, and as bio-stimulant to replenish microorganisms and organic carbon depleted by erosion and post-harvest field burning. However, mill mud has historically caused waste management challenges in the United States. This study reports on the chemical and microbial (16S rRNA) characteristics for mill muds of diverse origin and ages. Chemical signature (high phosphorus) distinguished mill mud from bagasse (high carbon to nitrogen (C/N) ratio) and soil (high pH) samples of diverse geographical/environmental origins. Bacterial alpha diversity of all sample types (mill mud, bagasse, and soil) was inversely correlated with C/N. Firmicutes dominated the microbial composition of fresh byproducts (mill mud and bagasse) as-produced within the operating factory. Upon aging and environmental exposure, the microbial community of the byproducts diversified to resemble that of soils, and became dominated by varying proportions of other phyla such as Acidobacteria, Chloroflexi, and Planctomyces. In summary, chemical properties allowed grouping of sample types (mill mud, bagasse, and soil-like), and microbial diversity analyses visualized aging caused by outdoor exposures including soil amendment and composting. Results suggest that a transient turnover of microbiome by amendments shifts towards more resilient population governed by the chemistry of bulk soil.


Assuntos
Saccharum , Solo , Carbono/análise , Nitrogênio/análise , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
15.
Sci Total Environ ; 845: 157219, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810894

RESUMO

Sequestration of soil carbon is considered as a promising strategy for mitigating climate change. As a source of recalcitrant carbon, biochar has been widely used in agricultural soil as a mean of stabilizing soil organic carbon (SOC). However, limited reports focused on the changes of biochar itself in soil when compared with the bulk SOC after biochar addition. To explore how environmental conditions influence the stability of biochar, isolated straw-derived biochar particles (0.25-2 mm) were embedded in an Anthrosol for 12 months under varied environmental conditions of incubation temperature (15 °C, 25 °C and 35 °C) and moisture (60 % and 150 % of saturated water content). Within the early 1 month of incubation, pH and inorganic nitrogen contents of biochar changed significantly as a function of moisture and temperature (p < 0.01), whereas water extractable organic carbon (WEOC) content was only influenced by moisture content (p < 0.01). The highest temperature (35 °C) and saturated water content (150 %) induced the largest aging response reflected by increases in oxygen-containing surface functional groups of biochar, including C-O-C (51.35 % - 149 %) and N-C-O (65.55 % - 119 %). Pearson correlation and RDA analysis indicated that the chemical properties of biochar contribute more to the carbon-source utilization properties of biochar colonized microbial community within 1 month of incubation, while the bulk soil chemical properties (pH, DOC, MBC and NO3-) had a higher contribution until the end of incubation. Moisture rather than temperature was the dominant factor in regulating the functional diversity of biochar colonized microbial community.


Assuntos
Carbono , Solo , Carbono/química , Carvão Vegetal/química , Solo/química , Temperatura , Água/química
16.
J Agric Food Chem ; 68(46): 12978-12983, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32043892

RESUMO

Sorghum (Sorghum bicolor (L.) Moench) produces a range of defense phytochemicals containing a quinone core structure: sorgoleone allelochemical, flavonoid phytoalexins, and a broad spectrum of polyphenols. Those phytochemicals react with the components of cellular and agroecosystems to form stable semiquinone radicals engaging in different proton-coupled electron transfer reactions. This unique redox reactivity of plant phenolics could be used to develop bioactive food ingredients and green pesticides. To achieve those application goals, chemical phenotyping methods sensitive to quinone-semiquinone-dihydroxybenzene redox cycles (e.g., electrochemical conversion with fluorescence detection) are in demand. Chemometrics-based fingerprinting tools could facilitate on-farm screening of target traits for breeding innovations.


Assuntos
Compostos Fitoquímicos/metabolismo , Sorghum/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Transporte de Elétrons , Feromônios/química , Feromônios/metabolismo , Compostos Fitoquímicos/química , Polifenóis/química , Polifenóis/metabolismo , Prótons , Sorghum/química
17.
PLoS One ; 15(7): e0234509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32663216

RESUMO

Polyphenols and other potential health-promoting components of sorghum (Sorghum bicolor (L.) Moench) drove its recent growth in the U.S. consumer food industry. Linear sweep (cyclic voltammetry, CV) and differential (cyclic differential pulse) voltammetry methods were developed to detect target polyphenols and amino acids in sweet sorghum juice without interference from the dominant secondary (trans-aconitic acid) and primary (sucrose) metabolites. Of 24 cultivars investigated, No.5 Gambela showed the highest electron-donating capacity, as indicated by the highest peak area, height, and peak anodic potential. Pearson's correlation analysis indicated the contribution of polyphenols (rather than amino acids) on CV voltammograms of juice samples. The Eh-pH values of 173 sweet sorghum juice samples collected in 2017 aligned with quercetin model polyphenol. Accumulation of quercetin-like polyphenols in No.5 Gambela could offer antioxidant-rich juice for conversion to edible syrup as well as an increased tolerance against a recently emerged pest, sugarcane aphid [(Melanaphis sacchari (Zehntner)].


Assuntos
Polifenóis/análise , Sorghum/metabolismo , Grão Comestível , Polifenóis/química , Saccharum/química , Paladar
18.
J Agric Food Chem ; 68(46): 12856-12869, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32155055

RESUMO

Heavy metals in agricultural soils exist in diverse dissolved (free cations and complexed species of positive, neutral, or negative charges), particulate (sorbed, structural, and coprecipitated), and colloidal (micro- and nanometer-sized particles) species. The fate of different heavy metal species is controlled by the master variables: pH (solubility), ionic strength (activity and charge-shielding), and dissolved organic carbon (complexation). In the rhizosphere, chemical speciation controls toxicokinetics (uptake and transport of metals by plants) while toxicodynamics (interaction between the plant and absorbed species) drives the toxicity outcome. Based on the critical review, the authors recommend omics and data mining techniques to link discrete knowledge bases from the speciation dynamics, soil microbiome, and plant transporter/gene expression relevant to homeostasis conditions of modern agriculture. Such efforts could offer a disruptive application tool to improve and sustain plant tolerance, food safety, and environmental quality.


Assuntos
Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Transporte Biológico , Metais Pesados/química , Metais Pesados/toxicidade , Solo/química , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Toxicocinética
19.
Sci Total Environ ; 726: 138562, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315855

RESUMO

Knowledge gap exists to understand the soil CO2 emission and microbial group response to substrates of whole plant residues and derived biochar. We used 13C-labelled substrates (rice straw, roots and biochar) to track influences of their decomposition on soil priming effect (PE) and phospholipid fatty acid (PLFA) composition during one-year incubation. Organic substrates at 1% (w/w) level increased soil pH, available nitrogen (AN) and available phosphorus (AP), especially during the first 45 days of incubation. After incubation, 44% of the added straw was mineralized to 13CO2, followed by roots (~35%) and biochar (~5%). Straw and roots amendment caused positive PE during 4-360 day of the incubation, where a lowest value of 41.9 mg C kg-1 was observed. Biochar amendment caused negative PE during 56-150 day of the incubation, where a largest value of -99.0 mg C kg-1 was observed. Analysis of 13C-labelled PLFA enabled the differentiation of microbial groups during substrates utilization. Gram positive bacteria (G+) and general bacteria groups were dominated in co-metabolizing both the native soil organic carbon (SOC) and substrates after straw and roots amendment. Gram negative bacteria (G-), especially identified by PLFA biomarkers cy17:0 and cy19:0, preferentially utilizes the 13C-labelled biochar but not promoting soil priming effect. Soil pH, SOC, AN and AP all explained changes of total and 13C-labelled PLFA contents (>75%, p < .05). Evidences showed that biochar is best in sequestering soil C pool, followed by straw and roots, and soil microbial groups in utilization of organic substances mediated SOC mineralization.


Assuntos
Microbiota , Oryza , Carbono , Carvão Vegetal , Solo , Microbiologia do Solo
20.
Artigo em Inglês | MEDLINE | ID: mdl-32013027

RESUMO

Remediation of soil heavy metal by biochar has been extensively studied. However, few studies focused on the role of biochar on the co-immobilization of cadmium (Cd(II)) and arsenate (As(V)) and related soil nutrient availability. Remediation tests were conducted with three types of pristine and ferric trichloride (FeCl3) modified biochar (rice, wheat, and corn straw biochar) in Cd-As co-contaminated soil, with application rates of 1, 5, and 10% (w/w) and the incubation of 1, 7, 10, and 15 days. Using TCLP (Toxicity Characteristic Leaching Procedure) method, 10% of FeCl3 modified corn-straw derived biochar (FCB) had the highest immobilization efficiency of Cd(II) (63.21%) and As(V) (95.10%) after 10 days of the incubation. Iron-modified biochar immobilized higher fractions of water-soluble (F1) and surface-absorbed (F2) metal fractions than pristine biochar. For FCB amendment, Cd was mostly presented in the organic matter (OM) and sulfides associated (F4) and residual (F5) fractions (88.52%), as was found in the Fe-Al (oxides and hydroxides) (F3), F4, and F5 fractions (75.87%). FCB amendment increased soil pH values and available iron contents (p < 0.05), while no changes in soil available phosphorus content (p > 0.05). This study showed that FCB application reduces the environmental mobility of metals in Cd-As contaminated soil, while it also increases soil pH and available nutrient mobility, improving soil environmental quality and reducing remediation costs.


Assuntos
Arsênio/isolamento & purificação , Cádmio/isolamento & purificação , Carvão Vegetal , Ferro , Poluentes do Solo/isolamento & purificação , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA