Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Methods ; 222: 199-206, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24269175

RESUMO

BACKGROUND: Rodents are important model systems used to explore spinal cord injury (SCI) and rehabilitation, and brain machine interfaces (BMI). We present a new method to provide mechanical interaction for BMI and rehabilitation in rat models of SCI. NEW METHOD: We present the design and implantation procedures for a pelvic orthosis that allows direct force application to the skeleton in brain machine interface and robot rehabilitation applications in rodents. We detail the materials, construction, machining, surgery and validation of the device. RESULTS: We describe the statistical validation of the implant procedures by comparing stepping parameters of 8 rats prior to and after implantation and surgical recovery. An ANOVA showed no effects of the implantation on stepping. Paired tests in the individual rats also showed no effect in 7/8 rats and minor effects in the last rat, within the group's variance. COMPARISON WITH EXISTING METHODS: Our method allows interaction with rats at the pelvis without any perturbation of normal stepping in the intact rat. The method bypasses slings, and cuffs, avoiding cuff or slings squeezing the abdomen, or other altered sensory feedback. Our implant osseointegrates, and thus allows an efficient high bandwidth mechanical coupling to a robot. The implants support quadrupedal training and are readily integrated into either treadmill or overground contexts. CONCLUSIONS: Our novel device and procedures support a range of novel experimental designs and motor tests for rehabilitative and augmentation devices in intact and SCI model rats, with the advantage of allowing direct force application at the pelvic bones.


Assuntos
Interfaces Cérebro-Computador , Implantes Experimentais , Aparelhos Ortopédicos , Pelve , Traumatismos da Medula Espinal/reabilitação , Análise de Variância , Animais , Fenômenos Biomecânicos , Feminino , Membro Posterior/fisiopatologia , Articulação do Quadril/fisiopatologia , Implantes Experimentais/efeitos adversos , Articulações/fisiopatologia , Locomoção/fisiologia , Procedimentos Ortopédicos , Aparelhos Ortopédicos/efeitos adversos , Pelve/patologia , Pelve/cirurgia , Ratos , Ratos Sprague-Dawley , Robótica , Traumatismos da Medula Espinal/fisiopatologia
2.
Ann N Y Acad Sci ; 1198: 279-93, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20536943

RESUMO

Neonatal spinalized (NST) rats can achieve autonomous weight-supported locomotion never seen after adult injury. Mechanisms that support function in NST rats include increased importance of cortical trunk control and altered biomechanical control strategies for stance and locomotion. Hindlimbs are isolated from perturbations in quiet stance and act in opposition to forelimbs in locomotion in NST rats. Control of roll and yaw of the hindlimbs is crucial in their locomotion. The biomechanics of the hind limbs of NST rats are also likely crucial. We present new data showing the whole leg musculature scales proportional to normal rat musculature in NST rats, regardless of function. This scaling is a prerequisite for the NST rats to most effectively use pattern generation mechanisms and motor patterns that are similar to those present in intact rats. Pattern generation may be built into the lumbar spinal cord by evolution and matched to the limb biomechanics, so preserved muscle scaling may be essential to the NST function observed.


Assuntos
Fenômenos Biomecânicos/fisiologia , Padronização Corporal/fisiologia , Córtex Cerebral/fisiologia , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Caminhada/fisiologia , Suporte de Carga/fisiologia , Adulto , Animais , Animais Recém-Nascidos , Peso Corporal , Córtex Cerebral/fisiopatologia , Membro Posterior , Humanos , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Ratos , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia
3.
J Neurophysiol ; 100(2): 839-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18509082

RESUMO

Unlike adult spinalized rats, approximately 20% of rats spinalized as postnatal day 1 or 2 (P1/P2) neonates achieve autonomous hindlimb weight support. Cortical representations of mid/low trunk occur only in such rats with high weight support. However, the importance of hindlimb/trunk motor cortex in function of spinalized rats remains unclear. We tested the importance of trunk sensorimotor cortex in their locomotion using lesions guided by cortical microstimulation in P1/P2 weight-supporting neonatal spinalized rats and controls. In four intact control rats, lesions of hindlimb/trunk cortex caused no treadmill deficits. All spinalized rats lesioned in trunk cortex (n = 16: 4 transplant, 6 transect, 6 transect + fibrin glue) lost an average of about 40% of their weight support. Intact trunk cortex was essential to their level of function. Lesion of trunk cortex substantially increased roll of the hindquarters, which correlated to diminished weight support, but other kinematic stepping parameters showed little change. Embryonic day 14 (E14) transplants support development of the trunk motor representations in their normal location. We tested the role of novel relay circuits arising from the grafts in such cortical representations in E14 transplants using the rats that received (noncellular) fibrin glue grafting at P1/P2 (8 allografts and 32 xenografts). Fibrin-repaired rats with autonomous weight support also had trunk cortical representations similar to those of E14 transplant rats. Thus acellular repair and intrinsic plasticity were sufficient to support the observed features. Our data show that effective cortical mechanisms for trunk control are essential for autonomous weight support in P1/P2 spinalized rats and these can be achieved by intrinsic plasticity.


Assuntos
Córtex Cerebral/fisiopatologia , Membro Posterior/inervação , Locomoção/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Suporte de Carga/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Mapeamento Encefálico , Córtex Cerebral/lesões , Córtex Cerebral/transplante , Estimulação Elétrica/métodos , Embrião de Mamíferos , Teste de Esforço , Transplante de Tecido Fetal/métodos , Adesivo Tecidual de Fibrina/uso terapêutico , Membro Posterior/fisiopatologia , Modelos Lineares , Ratos , Ratos Sprague-Dawley , Medula Espinal/transplante , Traumatismos da Medula Espinal/terapia , Adesivos Teciduais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA