Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430576

RESUMO

Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Magnética Transcraniana , Humanos , Ritmo Teta , Imagens, Psicoterapia , Projetos de Pesquisa
2.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991871

RESUMO

In this study, we investigated the neural and behavioral mechanisms associated with precision visual-motor control during the learning of sport shooting. We developed an experimental paradigm adapted for naïve individuals and a multisensory experimental paradigm. We showed that in the proposed experimental paradigms, subjects trained well and significantly increased their accuracy. We also identified several psycho-physiological parameters that were associated with shooting outcomes, including EEG biomarkers. In particular, we observed an increase in head-averaged delta and right temporal alpha EEG power before missing shots, as well as a negative correlation between theta-band energies in the frontal and central brain regions and shooting success. Our findings suggest that the multimodal analysis approach has the potential to be highly informative in studying the complex processes involved in visual-motor control learning and may be useful for optimizing training processes.


Assuntos
Desempenho Psicomotor , Esportes , Humanos , Desempenho Psicomotor/fisiologia , Psicofisiologia , Aprendizagem/fisiologia , Encéfalo/fisiologia , Eletroencefalografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-34343094

RESUMO

In this study, we address the issue of whether vibrotactile feedback can enhance the motor cortex excitability translated into the plastic changes in local cortical areas during motor imagery (MI) BCI-based training. For this purpose, we focused on two of the most notable neurophysiological effects of MI - the event-related desynchronization (ERD) level and the increase in cortical excitability assessed with navigated transcranial magnetic stimulation (nTMS). For TMS navigation, we used individual high-resolution 3D brain MRIs. Ten BCI-naive and healthy adults participated in this study. The MI (rest or left/right hand imagery using Graz-BCI paradigm) tasks were performed separately in the presence and absence of feedback. To investigate how much the presence/absence of vibrotactile feedback in MI BCI-based training could contribute to the sensorimotor cortical activations, we compared the MEPs amplitude during MI after training with and without feedback. In addition, the ERD levels during MI BCI-based training were investigated. Our findings provide evidence that applying vibrotactile feedback during MI training leads to (i) an enhancement of the desynchronization level of mu-rhythm EEG patterns over the contralateral motor cortex area corresponding to the MI of the non-dominant hand; (ii) an increase in motor cortical excitability in hand muscle representation corresponding to a muscle engaged by the MI.


Assuntos
Interfaces Cérebro-Computador , Excitabilidade Cortical , Neurorretroalimentação , Adulto , Eletroencefalografia , Humanos , Imaginação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA