Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Parasitology ; : 1-10, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311342

RESUMO

Rhipicephalus microplus, the cattle fever tick, is the most important ectoparasite impacting the livestock industry worldwide. Overreliance on chemical treatments for tick control has led to the emergence of acaricide-resistant ticks and environmental contamination. An immunological strategy based on vaccines offers an alternative approach to tick control. To develop novel tick vaccines, it is crucial to identify and evaluate antigens capable of generating protection in cattle. Chitinases are enzymes that degrade older chitin at the time of moulting, therefore allowing interstadial metamorphosis. In this study, 1 R. microplus chitinase was identified and its capacity to reduce fitness in ticks fed on immunized cattle was evaluated. First, the predicted amino acid sequence was determined in 4 isolates and their similarity was analysed by bioinformatics. Four peptides containing predicted B-cell epitopes were designed. The immunogenicity of each peptide was assessed by inoculating 2 cattle, 4 times at 21 days intervals, and the antibody response was verified by indirect ELISA. A challenge experiment was conducted with those peptides that were immunogenic. The chitinase gene was successfully amplified and sequenced, enabling comparison with reference strains. Notably, a 99.32% identity and 99.84% similarity were ascertained among the sequences. Furthermore, native protein recognition was demonstrated through western blot assays. Chitinase peptide 3 reduced the weight and oviposition of engorged ticks, as well as larvae viability, exhibiting a 71% efficacy. Therefore, chitinase 3 emerges as a viable vaccine candidate, holding promise for its integration into a multiantigenic vaccine against R. microplus.

2.
Parasitol Res ; 119(9): 2955-2963, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32647992

RESUMO

Equine piroplasmosis (EP) is an infectious, tick-borne disease caused by the hemoprotozoan parasites, Theileria equi, Babesia caballi, and a recently reported new species, T. haneyi. Infections by these apicomplexan parasites limit performance and cause economic losses for the horse industry. Equine piroplasmosis is widespread in the northern regions of Nigeria, where an increasing portion of the animal population is composed of horses. This disease has remained epidemiologically challenging, especially as the movement of horses increases across Nigeria. In this study, blood samples from 300 horses were collected in three states of northwestern Nigeria. The presence of piroplasms was screened by nested PCR targeting 18S rDNA and positive samples were analyzed using species-specific-nested PCR-targeting genes including ema1 (T. equi), rap1 (B. caballi), and a gene coding a protein of unknown function (T. haneyi). Species-specific-nPCR results demonstrated that the prevalence of T. equi was 13.0% (39/300), B. caballi was 3.3% (10/300) and T. haneyi was 2.7% (8/300). Mixed infections with T. equi and B. caballi was 2.7% (8/300) while T. equi, B. caballi, and T. haneyi multiple infection prevalence was 0.6% (2/300). We used 18S rDNA sequences to determine close relationships between T. equi by phylogenetic analysis and demonstrated that among 57 sequences of Theileria parasites, 28 samples belonged to clade A (49%), 13 samples were found to be clade C (22%), and 16 were clade D (28%). These results demonstrate the genetic diversity of T. equi circulating in horses from Nigeria.


Assuntos
Babesiose/diagnóstico , Doenças dos Cavalos/diagnóstico , Cavalos/parasitologia , Reação em Cadeia da Polimerase/veterinária , Theileriose/diagnóstico , Animais , Babesia/genética , Babesia/isolamento & purificação , Babesiose/epidemiologia , Babesiose/parasitologia , Bovinos , Doenças dos Cavalos/parasitologia , Nigéria/epidemiologia , Filogenia , RNA Ribossômico 18S/genética , Theileria/genética , Theileria/isolamento & purificação , Theileriose/epidemiologia , Theileriose/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia
3.
Parasitol Res ; 117(4): 1271-1276, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516215

RESUMO

Tropical theileriosis is a serious animal disease transmitted by tick vectors. The agents of theileriosis are obligate intracellular parasites that cause mild to severe disease in the mammalian host. Tropical theileriosis has been recognized as a burden to the development of the dairy industry in Sudan and causes major economic losses. However, knowledge about the distribution of Theileria spp. in Sudan and the extent of sequence variation within the 18S rRNA gene is currently unknown. The aim of this study was to determine the diversity of Theileria spp. using 18S rRNA-based PCR to detect parasites in cattle followed by cloning and sequencing. We observed an overall prevalence rate of 63% hemoparasite infection in cattle from Sennar state. A subset of samples was used for cloning and sequencing of the 18S rRNA gene. Nineteen of 44 animals were co-infected with more than one species of Theilera. Phylogenetic analysis revealed three Theileria spp. that were predominant in cattle including pathogenic T. annulata and apathogenic T. velifera and T. mutans. The present study provides information regarding the prevalence of theileriosis in Sudan and will help to design strategies to control it. Additionally, more study is needed to determine tick vector competence and degree of coinfection with multiple Theileria spp. in Sudan. This represents the first molecular phylogeny report to identify Theileria spp. in cattle from Sudan.


Assuntos
Doenças dos Bovinos/epidemiologia , Bovinos/parasitologia , Theileria/classificação , Theileria/genética , Theileriose/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Animais , Doenças dos Bovinos/parasitologia , Variação Genética , Filogenia , RNA Ribossômico 18S/genética , Sudão/epidemiologia , Theileria/isolamento & purificação , Theileriose/parasitologia , Doenças Transmitidas por Carrapatos/parasitologia
4.
J Proteome Res ; 16(3): 1327-1338, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28152313

RESUMO

Arthropod-borne protozoan pathogens have a complex life cycle that includes asexual reproduction of haploid stages in mammalian hosts and the development of diploid stages in invertebrate hosts. The ability of pathogens to invade, survive, and replicate within distinct cell types is required to maintain their life cycle. In this study, we describe a comparative proteomic analysis of a cattle pathogen, Babesia bovis, during its development within the mammalian and tick hosts with the goal of identifying cell-surface proteins expressed by B. bovis kinetes as potential targets for the development of a transmission blocking vaccine. To determine parasite tick-stage-specific cell-surface proteins, CyDye labeling was performed with B. bovis blood stages from the bovine host and kinetes from the tick vector. Cell-surface kinete-stage-specific proteins were identified using 2D difference in gel electrophoresis and analyzed by mass spectrometry. Ten proteins were identified as kinete-stage-specific, with orthologs found in closely related Apicomplexan pathogens. Transcriptional analysis revealed two genes were highly expressed by kinetes as compared with blood stages. Immunofluorescence using antibodies against the two proteins confirmed kinete-stage-specific expression. The identified cell-surface kinete proteins are potential candidates for the development of a B. bovis transmission blocking vaccine.


Assuntos
Babesia bovis/química , Estágios do Ciclo de Vida/fisiologia , Proteômica/métodos , Rhipicephalus/microbiologia , Animais , Babesia bovis/crescimento & desenvolvimento , Bovinos , Feminino , Perfilação da Expressão Gênica , Espectrometria de Massas , Proteínas de Membrana/análise , Proteínas de Membrana/genética
5.
Infect Immun ; 84(10): 2779-90, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27430272

RESUMO

The CD4(+) T-cell response is central for the control of Anaplasma marginale infection in cattle. However, the infection induces a functional exhaustion of antigen-specific CD4(+) T cells in cattle immunized with A. marginale outer membrane proteins or purified outer membranes (OMs), which presumably facilitates the persistence of this rickettsia. In the present study, we hypothesize that T-cell exhaustion following infection is induced by the upregulation of immunoinhibitory receptors on T cells, such as programmed death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3). OM-specific T-cell responses and the kinetics of PD-1-positive (PD-1(+)) LAG-3(+) exhausted T cells were monitored in A. marginale-challenged cattle previously immunized with OMs. Consistent with data from previous studies, OM-specific proliferation of peripheral blood mononuclear cells (PBMCs) and interferon gamma (IFN-γ) production were significantly suppressed in challenged animals by 5 weeks postinfection (wpi). In addition, bacteremia and anemia also peaked in these animals at 5 wpi. Flow cytometric analysis revealed that the percentage of PD-1(+) LAG-3(+) T cells in the CD4(+), CD8(+), and γδ T-cell populations gradually increased and also peaked at 5 wpi. A large increase in the percentage of LAG-3(+) γδ T cells was also observed. Importantly, in vitro, the combined blockade of the PD-1 and LAG-3 pathways partially restored OM-specific PBMC proliferation and IFN-γ production at 5 wpi. Taken together, these results indicate that coexpression of PD-1 and LAG-3 on T cells contributes to the rapid exhaustion of A. marginale-specific T cells following infection and that these immunoinhibitory receptors regulate T-cell responses during bovine anaplasmosis.


Assuntos
Anaplasma marginale/imunologia , Anaplasmose/microbiologia , Antígenos CD/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Linfócitos T CD4-Positivos/imunologia , Doenças dos Bovinos/microbiologia , Receptor de Morte Celular Programada 1/metabolismo , Anaplasmose/imunologia , Anaplasmose/prevenção & controle , Animais , Antígenos de Bactérias/imunologia , Bacteriemia/microbiologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Bovinos , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunização/métodos , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Regulação para Cima , Proteína do Gene 3 de Ativação de Linfócitos
6.
PLoS Pathog ; 10(10): e1004499, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25392914

RESUMO

The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as "ecological filters" for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology.


Assuntos
Vetores Aracnídeos/microbiologia , Dermacentor/microbiologia , Francisella/genética , Variação Genética , Animais , Trato Gastrointestinal/microbiologia , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , Coelhos , Virulência
7.
Appl Environ Microbiol ; 82(11): 3217-3224, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994084

RESUMO

UNLABELLED: The remarkable genetic diversity of vector-borne pathogens allows for the establishment of superinfection in the mammalian host. To have a long-term impact on population strain structure, the introduced strains must also be transmitted by a vector population that has been exposed to the existing primary strain. The sequential exposure of the vector to multiple strains frequently prevents establishment of the second strain, a phenomenon termed superinfection exclusion. As a consequence, superinfection exclusion may greatly limit genetic diversity in the host population, which is difficult to reconcile with the high degree of genetic diversity maintained among vector-borne pathogens. Using Anaplasma marginale, a tick-borne bacterial pathogen of ruminants, we hypothesized that superinfection exclusion is temporally dependent and that longer intervals between strain exposures allow successful acquisition and transmission of a superinfecting strain. To test this hypothesis, we sequentially exposed Dermacentor andersoni ticks to two readily tick-transmissible strains of A. marginale The tick feedings were either immediately sequential or 28 days apart. Ticks were allowed to transmission feed and were individually assessed to determine if they were infected with one or both strains. The second strain was excluded from the tick when the exposure interval was brief but not when it was prolonged. Midguts and salivary glands of individual ticks were superinfected and transmission of both strains occurred only when the exposure interval was prolonged. These findings indicate that superinfection exclusion is temporally dependent, which helps to account for the differences in pathogen strain structure in tropical compared to temperate regions. IMPORTANCE: Many vector-borne pathogens have marked genetic diversity, which influences pathogen traits such as transmissibility and virulence. The most successful strains are those that are preferentially transmitted by the vector. However, the factors that determine successful transmission of a particular strain are unknown. In the case of intracellular, bacterial, tick-borne pathogens, one potential factor is superinfection exclusion, in which colonization of ticks by the first strain of a pathogen it encounters prevents the transmission of a second strain. Using A. marginale, the most prevalent tick-borne pathogen of cattle worldwide, and its natural tick vector, we determined that superinfection exclusion occurs when the time between exposures to two strains is brief but not when it is prolonged. These findings suggest that superinfection exclusion may influence strain transmission in temperate regions, where tick activity is limited by season, but not in tropical regions, where ticks are active for long periods.


Assuntos
Anaplasma marginale/crescimento & desenvolvimento , Anaplasma marginale/isolamento & purificação , Antibiose , Vetores Aracnídeos/microbiologia , Dermacentor/microbiologia , Anaplasma marginale/classificação , Animais , Trato Gastrointestinal/microbiologia , Glândulas Salivares/microbiologia , Fatores de Tempo
8.
Annu Rev Entomol ; 60: 561-80, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564746

RESUMO

Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread.


Assuntos
Vetores Aracnídeos/fisiologia , Babesiose , Equidae , Doenças dos Cavalos , Theileriose , Carrapatos/fisiologia , Animais , Vetores Aracnídeos/parasitologia , Babesia/fisiologia , Babesiose/parasitologia , Babesiose/prevenção & controle , Babesiose/transmissão , Doenças dos Cavalos/parasitologia , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/transmissão , Cavalos , Theileria/fisiologia , Theileriose/parasitologia , Theileriose/prevenção & controle , Theileriose/transmissão , Carrapatos/parasitologia
9.
Infect Immun ; 82(10): 4426-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25114111

RESUMO

Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype.


Assuntos
Babesia bovis/patogenicidade , Babesiose/veterinária , Doenças dos Bovinos/parasitologia , Carrapatos/parasitologia , Animais , Babesiose/parasitologia , Babesiose/patologia , Bovinos , Doenças dos Bovinos/patologia , Análise Mutacional de DNA , DNA de Protozoário/química , DNA de Protozoário/genética , Feminino , Masculino , Mutação , Análise de Sequência de DNA , Virulência
10.
Parasit Vectors ; 17(1): 75, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374075

RESUMO

BACKGROUND: Bovine babesiosis caused by Babesia bovis is one of the most important tick-borne diseases of cattle in tropical and subtropical regions. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. In the tick midgut, extracellular Babesia parasites transform into gametes that fuse to form zygotes. To date, little is known about genes and proteins expressed by male gametes. METHODS AND RESULTS: We developed a method to separate male gametes from in vitro induced B. bovis culture. Separation enabled the validation of sex-specific markers. Collected male gametocytes were observed by Giemsa-stained smear and live-cell fluorescence microscopy. Babesia male gametes were used to confirm sex-specific markers by quantitative real-time PCR. Some genes were found to be male gamete specific genes including pka, hap2, α-tubulin II and znfp2. However, α-tubulin I and ABC transporter, trap2-4 and ccp1-3 genes were found to be upregulated in culture depleted of male gametes (female-enriched). Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of HAP2 by male and TRAP2-4 by female gametes. These results revealed strong markers to distinguish between B. bovis male and female gametes. CONCLUSIONS: Herein, we describe the identification of sex-specific molecular markers essential for B. bovis sexual reproduction. These tools will enhance our understanding of the biology of sexual stages and, consequently, the development of additional strategies to control bovine babesiosis.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Carrapatos , Bovinos , Feminino , Masculino , Animais , Babesia bovis/genética , Babesiose/parasitologia , Tubulina (Proteína) , Babesia/genética , Carrapatos/parasitologia , Biomarcadores , Células Germinativas , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , Mamíferos
11.
Ticks Tick Borne Dis ; 15(6): 102374, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971081

RESUMO

The Asian longhorned tick (Haemaphysalis longicornis) was first reported in the United States in 2017 and has since been detected in at least 17 states. This tick infests cattle and can produce large populations quickly due to its parthenogenetic nature, leading to significant livestock mortalities and economic losses. While H. longicornis has not been detected in Texas, species distribution models have identified southern Texas as a possible hospitable region for this tick. Southern Texas is currently home to the southern cattle tick (Rhipicephalus microplus), which can transmit the causative agent of cattle fever (Babesia bovis). With the potential for H. longicornis and B. bovis to overlap in southern Texas and their potential to negatively impact the national and global livestock industry, it is imperative to identify the role H. longicornis may play in the cattle fever disease system. A controlled acquisition and transmission experiment tested whether H. longicornis is a vector for B. bovis, with the R. microplus-B. bovis system used as a positive control. Transstadial (nymphs to adults) and transovarial (adults to larvae) transmission and subsequent transstadial maintenance (nymphs and adults) routes were tested in this study. Acquisition-fed, splenectomized animals were used to increase the probability of tick infection. Acquisition nymphs were macerated whole and acquisition adults were dissected to remove midguts and ovaries at five time points (4, 6, 8, 10, and 12 days post-repletion), with 40 ticks processed per time point and life stage. The greatest percentage of nymphs with detectable B. bovis DNA occurred six days post-repletion (20.0 %). For adults, the percentage of positive midguts and ovaries increased as days post-repletion progressed, with day 12 having the highest percentage of positive samples (67.5 % and 60.0 %, respectively). When egg batches were tested in triplicate, all H. longicornis egg batches were negative for B. bovis, while all R. microplus egg batches were positive for B. bovis. During the transmission phase, the subsequent life stages for transstadial (adults) and transovarial transmission/transstadial maintenance (larvae, nymphs, and adults) were fed on naïve, splenectomized calves. All life stages of H. longicornis ticks tested during transmission were negative for B. bovis. Furthermore, the transmission fed animals were also negative for B. bovis and did not show signs of bovine babesiosis during the 45-day post tick transmission period. Given the lack of successful transstadial or transovarial transmission, it is unlikely that H. longicornis is a vector for B. bovis.

12.
Parasit Vectors ; 17(1): 245, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824598

RESUMO

BACKGROUND: Bovine babesiosis is caused by infection with the protozoal parasite Babesia bovis, which is transmitted by Rhipicephalus (Boophilus) spp. It can cause mortality rates up to 90% in immunologically naive Bos taurus cattle. In south Texas, R. (B.) microplus is known to infest nilgai antelope (Boselaphus tragocamelus); however, their susceptibility to infection with B. bovis and their role in the transmission of the parasite remain unknown. In this study, we challenged nilgai antelope with B. bovis and evaluated their susceptibility to infection. METHODS: Nilgai were needle inoculated with ≈108 B. bovis-parasitized erythrocytes (merozoites) or a homogenate of B. bovis-infected larval ticks (sporozoite) delivered intravenously. Bos taurus beef calves were inoculated in parallel, as this strain of B. bovis is lethal to cattle. Temperature and hematocrit were monitored daily over the course of each study, and whole blood was collected for molecular [polymerase chain reaction (PCR)] and serological [indirect enzyme-linked immunosorbent assay (ELISA)] diagnostic evaluation. Histological sections of nilgai cerebral tissue were examined for evidence of infection. Recipient bovine calves were sub-inoculated with blood from nilgai challenged with either stage of the parasite, and they were monitored for clinical signs of infection and evaluated by a PCR diagnostic assay. Red blood cells (RBCs) from prechallenged nilgai and B. taurus beef cattle were cultured with an in vitro B. bovis merozoite culture to examine colonization of the RBCs by the parasite. RESULTS: Nilgai did not display clinical signs of infection upon inoculation with either the merozoite or sporozoite stage of B. bovis. All nilgai were PCR-negative for the parasite, and they did not develop antibodies to B. bovis. No evidence of infection was detected in histological sections of nilgai tissues, and in vitro culture analysis indicated that the nilgai RBCs were not colonized by B. bovis merozoites. Cattle subinoculated with blood from challenged nilgai did not display clinical signs of infection, and they were PCR-negative up to 45 days after transfer. CONCLUSIONS: Nilgai do not appear to be susceptible to infection with a strain of B. bovis that is lethal to cattle. Tick control on these alternative hosts remains a critical priority, especially given their potential to disseminate ticks over long distances.


Assuntos
Antílopes , Babesia bovis , Babesiose , Animais , Babesia bovis/genética , Babesia bovis/patogenicidade , Babesia bovis/isolamento & purificação , Babesia bovis/imunologia , Babesiose/parasitologia , Bovinos , Antílopes/parasitologia , Doenças dos Bovinos/parasitologia , Eritrócitos/parasitologia , Texas , Virulência , Rhipicephalus/parasitologia , Feminino , Reação em Cadeia da Polimerase
13.
Front Pharmacol ; 15: 1407548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751779

RESUMO

Introduction: B. bovis is an apicomplexan parasite responsible for bovine babesiosis, a tick-borne disease with a worldwide impact. The disease remains inefficiently controlled, and few effective drugs, including imidocarb dipropionate (ID), are currently available in endemic areas. The objective of this study was to evaluate whether buparvaquone (BPQ), a drug currently used to treat cattle infected with the Babesia-related Theileria spp. parasites, could be active against Babesia parasites. Herein, we compared the effect of ID and BPQ on B. bovis growth in vitro erythrocyte culture. Methods: We compared the effect of ID and BPQ on the culture-adapted Texas T2Bo strain of B. bovis. In vitro cultured parasites were incubated with ID and BPQ at two starting parasitemia levels (PPE), 0.2% and 1%. In vitro cultured parasites were treated with ID or BPQ at concentrations ranging from 10 to 300 nM, during 4 consecutive days. Parasitemia levels were daily evaluated using microscopic examination. Data was compared using the independent Student's t-test. Results and discussion: Both ID and BPQ significantly inhibited (p < 0.05) the growth of B. bovis, regardless of the initial parasitemia used. At 1% parasitemia, BPQ had lower calculated inhibitory concentration 50 (IC50: 50.01) values than ID (IC50: 117.3). No parasites were found in wells with 0.2% starting parasitemia, treated previously with 50 nM of BPQ or ID, after 2 days of culture without drugs. At 1% parasitemia, no parasite survival was detected at 150 nM of BPQ or 300 nM of ID, suggesting that both drugs acted as babesiacidals. Conclusion: Overall, the data suggests that BPQ is effective against B. bovis and shows a residual effect that seems superior to ID, which is currently the first-line drug for treating bovine babesiosis globally.

14.
Infect Immun ; 81(5): 1852-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23509140

RESUMO

Anaplasma marginale subsp. centrale was the first vaccine used to protect against a rickettsial disease and is still in widespread use a century later. As its use preceded development of either cryopreservation or cell culture, the vaccine strain was maintained for decades by sequential passage among donor animals, excluding the natural tick-borne transmission cycle that provides a selective pressure or population "bottleneck." We demonstrated that the vaccine strain is genetically heterogeneous at 46 chromosomal loci and that heterogeneity was maintained upon inoculation into recipient animals. The number of variants per site ranged from 2 to 11 with a mean of 2.8/locus and a mode and median of 2/locus; variants included single-nucleotide polymorphisms, insertions/deletions, polynucleotide tracts, and different numbers of perfect repeats. The genetic heterogeneity is highly unlikely to be a result of strain contamination based on analysis using a panel of eight gene markers with a high power for strain discrimination. In contrast, heterogeneity appears to be a result of genetic drift in the absence of the restriction of tick passage. Heterogeneity could be reduced following tick passage, and the reduced heterogeneity could be maintained in sequential intravenous and tick-borne passages. The reduction in vaccine strain heterogeneity following tick passage did not confer an enhanced transmission phenotype, indicating that a stochastically determined population bottleneck was likely responsible as opposed to a positive selective pressure. These findings demonstrate the plasticity of an otherwise highly constrained genome and highlight the role of natural transmission cycles in shaping and maintaining the bacterial genome.


Assuntos
Anaplasma marginale/genética , Anaplasma marginale/imunologia , Anaplasmose/transmissão , Vacinas Bacterianas/genética , Heterogeneidade Genética , Anaplasmose/prevenção & controle , Animais , Carrapatos/microbiologia
15.
Parasit Vectors ; 16(1): 16, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650585

RESUMO

BACKGROUND: Babesia bovis, an intra-erythrocytic apicomplexan parasite, is one of the causative agents of bovine babesiosis, the most important tick-borne disease of cattle in tropical and subtropical regions. Babesia bovis has a complex life-cycle that includes sexual development within the tick vector. The development of a transmission blocking vaccine to control bovine babesiosis requires the identification of antigens displayed on the surface of the parasite during its development within tick vectors. Four B. bovis cysteine-rich GCC2/GCC3 domain protein (BboGDP) family members were previously identified and are differentially expressed as discrete pairs by either blood stages or kinetes. In this study we focused on two family members, BboGDP1 and -3, that are expressed by Babesia parasites during tick infection. METHODS AND RESULTS: Transcription analysis using quantitative PCR demonstrated that BboGDP1 and -3 were upregulated in in vitro-induced sexual stage parasites and during parasite development in the tick midgut. Moreover, protein expression analysis of BboGDP1 and -3 during the development of sexual stages in in vitro culture was consistent with their transcription profile. Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of BboGDP1 and -3 on in vitro-induced sexual stage parasites. In addition, fixed immunofluorescence analysis showed reactivity of anti-BboGDP1 and -3 polyclonal antibodies to kinetes. CONCLUSIONS: The collective data indicate that BboGDP1 and -3 are expressed by kinetes and on the surface of sexual stages of the parasites. The identified parasite surface membrane proteins BboGDP1 and -3 are potential candidates for the development of a B. bovis transmission blocking vaccine.


Assuntos
Babesia bovis , Babesiose , Doenças dos Bovinos , Rhipicephalus , Vacinas , Animais , Bovinos , Rhipicephalus/metabolismo , Babesiose/parasitologia , Cisteína/metabolismo , Vacinas/metabolismo , Proteínas de Membrana/metabolismo , Doenças dos Bovinos/parasitologia
16.
Front Immunol ; 14: 1219913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583702

RESUMO

Introduction: Live in vivo attenuated Babesia bovis vaccines produced by sequential passages in splenectomized calves have historically been used to control acute bovine babesiosis in endemic areas worldwide. However, several constraints prevent the widespread use of these vaccines, including the need for several splenectomized calves to produce vaccine batches, and potential inconsistent parasite attenuation, which contraindicates their use for highly Babesia-susceptible adult cattle. Thus, the use of vaccines based on well-defined in vitro culture attenuated B. bovis strains emerges as a more sustainable and efficient alternative. Previous work demonstrated that the culture attenuated strain Att-S74-T3Bo is non-tick transmissible and able to safely protect calves against needle challenge with a B. bovis virulent strain. Methods and results: Herein we evaluated safety and efficacy of Att-S74-T3Bo in preventing acute babesiosis in adult (>1.5 year of age) cattle. Results demonstrated that Att-S74-T3Bo vaccination of adult animals (n=5) induced self-limiting signs of acute infection and protected the vaccinated animals against challenge with the homologous virulent B. bovis strain Vir-S74-T3Bo. Att-S74-T3Bo-vaccinated adult cattle developed significant (P<0.05) monocytosis, with concomitant neutropenia and CD4+ leukopenia, in peripheral blood early after vaccination. Also, vaccinated animals developed a specific signature of pro- and anti-inflammatory cytokine expression in peripheral blood and significant levels of IgM, total IgG, IgG1, and IgG2 against the B. bovis immunodominant antigen RAP-1 CT. Strikingly, none of the vaccinated animals showed any signs of acute babesiosis after challenge with Vir-S74-T3Bo. In contrast, control adult cattle (n=5) showed pathognomonic symptoms of acute babesiosis, and significant decrease (P<0.05) in lymphocytes, monocytes, and neutrophils, starting on day 7 post-challenge. All control animals developed severe acute disease and were euthanized on days 10 through 12 days post-challenge. Discussion and conclusion: Evidence from this study indicates that Att-S74-T3Bo safely protects highly susceptible adult cattle against challenge with a homologous virulent strain of B. bovis. In conclusion, Att-S74-T3Bo may be considered as a potential efficient and sustainable attenuated candidate vaccine strain to control acute bovine babesiosis in highly susceptible adult cattle. Future studies should focus on increasing the number of animals vaccinated, duration of immunity, and efficacy of this attenuated strain against heterologous virulent parasite strains.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Bovinos , Animais , Babesiose/parasitologia , Vacinação/métodos , Imunoglobulina G , Vacinas Atenuadas
17.
Pathogens ; 12(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986418

RESUMO

Bovine babesiosis is a tick-transmitted disease caused by intraerythrocytic protozoan parasites of the genus Babesia. Its main causative agents in the Americas are Babesia bigemina and Babesia bovis, while Babesia ovata affects cattle in Asia. All Babesia species secrete proteins stored in organelles of the apical complex, which are involved in all steps of the invasion process of vertebrate host cells. Unlike other apicomplexans, which have dense granules, babesia parasites instead have large, round intracellular organelles called spherical bodies. Evidence suggests that proteins from these organelles are released during the process of invading red blood cells, where spherical body proteins (SBPs) play an important role in cytoskeleton reorganization. In this study, we characterized the gene that encodes SBP4 in B. bigemina. This gene is transcribed and expressed in the erythrocytic stages of B. bigemina. The sbp4 gene consists of 834 nucleotides without introns that encode a protein of 277 amino acids. In silico analysis predicted a signal peptide that is cleaved at residue 20, producing a 28.88-kDa protein. The presence of a signal peptide and the absence of transmembrane domains suggest that this protein is secreted. Importantly, when cattle were immunized with recombinant B. bigemina SBP4, antibodies identified B. bigemina and B. ovata merozoites according to confocal microscopy observations and were able to neutralize parasite multiplication in vitro for both species. Four peptides with predicted B-cell epitopes were identified to be conserved in 17 different isolates from six countries. Compared with the pre-immunization sera, antibodies against these conserved peptides reduced parasite invasion in vitro by 57%, 44%, 42%, and 38% for peptides 1, 2, 3, and 4, respectively (p < 0.05). Moreover, sera from cattle infected with B. bigemina cattle contained antibodies that recognized the individual peptides. All these results support the concept of spb4 as a new gene in B. bigemina that should be considered a candidate for a vaccine to control bovine babesiosis.

18.
Infect Immun ; 80(7): 2354-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22585962

RESUMO

Superinfection occurs when a second, genetically distinct pathogen strain infects a host that has already mounted an immune response to a primary strain. For antigenically variant pathogens, the primary strain itself expresses a broad diversity of variants over time. Thus, successful superinfection would require that the secondary strain express a unique set of variants. We tested this hypothesis under conditions of natural transmission in both temperate and tropical regions where, respectively, single-strain infections and strain superinfections of the tick-borne pathogen Anaplasma marginale predominate. Our conclusion that strain superinfection is associated with a significant increase in variant diversity is supported by progressive analysis of variant composition: (i) animals with naturally acquired superinfection had a statistically significantly greater number of unique variant sequences than animals either experimentally infected with single strains or infected with a single strain naturally, (ii) the greater number of unique sequences reflected a statistically significant increase in primary structural diversity in the superinfected animals, and (iii) the increase in primary structural diversity reflected increased combinations of the newly identified hypervariable microdomains. The role of population immunity in establishing temporal and spatial patterns of infection and disease has been well established. The results of the present study, which examined strain structure under conditions of natural transmission and population immunity, support that high levels of endemicity also drive pathogen divergence toward greater strain diversity.


Assuntos
Anaplasma marginale/imunologia , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Variação Antigênica/imunologia , Variação Genética , Superinfecção , Anaplasma marginale/genética , Anaplasmose/imunologia , Animais , Variação Antigênica/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Prevalência , Análise de Sequência de DNA
19.
BMC Genomics ; 13: 603, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23137308

RESUMO

BACKGROUND: Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. RESULTS: The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. CONCLUSIONS: The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.


Assuntos
Genoma de Protozoário , Theileria/genética , Animais , Bovinos , Mapeamento Cromossômico , Cromossomos/genética , Cromossomos/metabolismo , Hibridização Genômica Comparativa , Metabolismo Energético/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fosfolipídeos/metabolismo , Filogenia , Proteínas de Protozoários/genética , Theileria/classificação , Theileriose/genética , Theileriose/metabolismo , Theileriose/parasitologia
20.
Pathogens ; 11(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35745477

RESUMO

Bovine babesiosis is caused by apicomplexan pathogens of the genus Babesia, including B. bovis. This protozoan parasite has a complex life cycle involving dynamic changes to its transcriptome during the transition between the invertebrate and vertebrate hosts. Studying the role of genes upregulated by tick stage parasites has been hindered by the lack of appropriate tools to study parasite gene products in the invertebrate host. Herein, we present tfBbo5480, a transfected B. bovis cell line, constitutively expressing enhanced green fluorescent protein (eGFP) created by a whole gene replacement transfection strategy, that was capable of completing the parasite's entire life cycle in both the vertebrate and invertebrate hosts. tfBbo5480 was demonstrated to respond to in vitro sexual stage induction and upon acquisition by the female tick vector, Rhipicephalus microplus, the tick specific kinete stage of tfBbo5480 was detected in tick hemolymph. Larvae from tfBbo5480 exposed R. microplus female ticks successfully transmitted the transfected parasite to a naïve calf. The development of the whole gene replacement strategy will permit a deeper understanding of the biology of parasite-host-vector triad interactions and facilitate the evaluation of upregulated genes during the parasite's journey through the tick vector leading to new intervention strategies for the control of bovine babesiosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA