Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Glycobiology ; 34(1)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37944064

RESUMO

During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.


Assuntos
COVID-19 , Saccharomycetales , Vacinas , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , Teste para COVID-19 , Pichia/genética , Pichia/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Recombinantes/química , Vacinas/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais
2.
PLoS Biol ; 18(3): e3000638, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208418

RESUMO

Caenorhabditis elegans and its cognate bacterial diet comprise a reliable, widespread model to study diet and microbiota effects on host physiology. Nonetheless, how diet influences the rate at which neurons die remains largely unknown. A number of models have been used in C. elegans as surrogates for neurodegeneration. One of these is a C. elegans strain expressing a neurotoxic allele of the mechanosensory abnormality protein 4 (MEC-4d) degenerin/epithelial Na+ (DEG/ENaC) channel, which causes the progressive degeneration of the touch receptor neurons (TRNs). Using this model, our study evaluated the effect of various dietary bacteria on neurodegeneration dynamics. Although degeneration of TRNs was steady and completed at adulthood in the strain routinely used for C. elegans maintenance (Escherichia coli OP50), it was significantly reduced in environmental and other laboratory bacterial strains. Strikingly, neuroprotection reached more than 40% in the E. coli HT115 strain. HT115 protection was long lasting well into old age of animals and was not restricted to the TRNs. Small amounts of HT115 on OP50 bacteria as well as UV-killed HT115 were still sufficient to produce neuroprotection. Early growth of worms in HT115 protected neurons from degeneration during later growth in OP50. HT115 diet promoted the nuclear translocation of DAF-16 (ortholog of the FOXO family of transcription factors), a phenomenon previously reported to underlie neuroprotection caused by down-regulation of the insulin receptor in this system. Moreover, a daf-16 loss-of-function mutation abolishes HT115-driven neuroprotection. Comparative genomics, transcriptomics, and metabolomics approaches pinpointed the neurotransmitter γ-aminobutyric acid (GABA) and lactate as metabolites differentially produced between E. coli HT115 and OP50. HT115 mutant lacking glutamate decarboxylase enzyme genes (gad), which catalyze the conversion of GABA from glutamate, lost the ability to produce GABA and also to stop neurodegeneration. Moreover, in situ GABA supplementation or heterologous expression of glutamate decarboxylase in E. coli OP50 conferred neuroprotective activity to this strain. Specific C. elegans GABA transporters and receptors were required for full HT115-mediated neuroprotection. Additionally, lactate supplementation also increased anterior ventral microtubule (AVM) neuron survival in OP50. Together, these results demonstrate that bacterially produced GABA and other metabolites exert an effect of neuroprotection in the host, highlighting the role of neuroactive compounds of the diet in nervous system homeostasis.


Assuntos
Caenorhabditis elegans/fisiologia , Escherichia coli/fisiologia , Neurônios/patologia , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Bactérias/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Dieta , Escherichia coli/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Bacteriana da Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Interneurônios/patologia , Interneurônios/fisiologia , Lactatos/metabolismo , Lactatos/farmacologia , Mecanorreceptores/patologia , Mecanorreceptores/fisiologia , Mutação , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácido gama-Aminobutírico/farmacologia
3.
J Appl Microbiol ; 132(6): 4277-4288, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35357068

RESUMO

AIMS: Bovine brucellosis is a worldwide zoonotic disease that causes important economic losses and public health concerns. Because control of the disease depends on vaccination, serodiagnosis and isolation of the infected animals, affordable, rapid and accurate point of care (POC) tests are needed. METHODS AND RESULTS: We developed and evaluated a novel glycoprotein-based immunochromatographic test for the detection of IgG antibodies against the O-polysaccharide of Brucella in bovine serum samples. Brucella GlycoStrip combines the power of immunochromatographic and bacterial glycoengineering technologies for the diagnosis of bovine brucellosis. The analysis of positive and negative reference samples indicated that the test has a diagnostic sensitivity and specificity of 96.9% (95% CI: 92.7%-100.0%) and 100%, respectively. CONCLUSIONS: Due to the recombinant glycoprotein-based antigen OAg-AcrA, which consists of the O-side chain of Brucella smooth lipopolysaccharide (sLPS) covalently linked to the carrier protein AcrA, the test is highly accurate, allows the differentiation of infected animals from those vaccinated with a rough strain or with a single dose of a smooth strain and fulfil the minimum diagnostic requirements established by the national and international regulations. SIGNIFICANCE AND IMPACT OF STUDY: This strip test could provide a rapid (10 min) and accurate diagnosis of bovine brucellosis in the field contributing to the control of the disease.


Assuntos
Brucella , Brucelose Bovina , Brucelose , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias , Brucelose/diagnóstico , Brucelose Bovina/diagnóstico , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Testes Sorológicos/veterinária
4.
Environ Res ; 207: 112183, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637759

RESUMO

In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co-occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment.


Assuntos
Metagenoma , Microbiota , Bactérias/genética , Humanos , Metagenômica , Interações Microbianas , Microbiota/genética
5.
Cell Microbiol ; 22(11): e13245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32657513

RESUMO

Adhesion to host cells is the first step in the virulence cycle of any pathogen. In Gram-negative bacteria, adhesion is mediated, among other virulence factors such as the lipopolysaccharides, by specific outer-membrane proteins generally termed adhesins that belong to a wide variety of families and have different evolutionary origins. In Brucella, a widespread zoonotic pathogen of animal and human health concern, adhesion is central as it may determine the intracellular fate of the bacterium, an essential stage in its pathogenesis. In the present paper, we further characterised a genomic locus that we have previously reported encodes an adhesin (BigA) with a bacterial immunoglobulin-like domain (BIg-like). We found that this region encodes a second adhesin, which we have named BigB; and PalA, a periplasmic protein necessary for the proper display in the outer membrane of BigA and BigB. Deletion of bigB or palA diminishes the adhesion of the bacterium and overexpression of BigB dramatically increases it. Incubation of cells with the recombinant BIg-like domain of BigB induced important cytoskeletal rearrangements and affected the focal adhesion sites indicating that the adhesin targets cell-cell or cell-matrix proteins. We additionally show that PalA has a periplasmic localisation and is completely necessary for the proper display of BigA and BigB, probably avoiding their aggregation and facilitating their transport to the outer membrane. Our results indicate that this genomic island is entirely devoted to the adhesion of Brucella to host cells.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Brucella abortus/patogenicidade , Ilhas Genômicas , Adesinas Bacterianas/genética , Animais , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/genética , Brucella abortus/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Periplasma/metabolismo , Virulência
6.
Mar Drugs ; 19(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063876

RESUMO

Keratinases present promising biotechnological applications, due to their ability to degrade keratin. Streptomyces appears as one of the main sources of these enzymes, but complete genome sequences of keratinolytic bacteria are still limited. This article reports the complete genomes of three marine-derived streptomycetes that show different levels of feather keratin degradation, with high (strain G11C), low (strain CHD11), and no (strain Vc74B-19) keratinolytic activity. A multi-step bioinformatics approach is described to explore genes encoding putative keratinases in these genomes. Despite their differential keratinolytic activity, multiplatform annotation reveals similar quantities of ORFs encoding putative proteases in strains G11C, CHD11, and Vc74B-19. Comparative genomics classified these putative proteases into 140 orthologous groups and 17 unassigned orthogroup peptidases belonging to strain G11C. Similarity network analysis revealed three network communities of putative peptidases related to known keratinases of the peptidase families S01, S08, and M04. When combined with the prediction of cellular localization and phylogenetic reconstruction, seven putative keratinases from the highly keratinolytic strain Streptomyces sp. G11C are identified. To our knowledge, this is the first multi-step bioinformatics analysis that complements comparative genomics with phylogeny and cellular localization prediction, for the prediction of genes encoding putative keratinases in streptomycetes.


Assuntos
Organismos Aquáticos/química , Organismos Aquáticos/genética , Biologia Computacional/métodos , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/genética , Streptomyces/química , Streptomyces/genética , Organismos Aquáticos/microbiologia , Genômica , Filogenia , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
7.
BMC Genomics ; 21(1): 692, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023469

RESUMO

BACKGROUND: The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. RESULTS: Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. CONCLUSIONS: We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.


Assuntos
Adaptação Fisiológica , Alteromonadaceae/genética , Ambientes Extremos , Genoma Bacteriano , Proteoma , Alanina Desidrogenase/genética , Alanina Desidrogenase/metabolismo , Alteromonadaceae/classificação , Alteromonadaceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Respiração Celular , Pressão Hidrostática , Fluidez de Membrana , Metilaminas/metabolismo , Nitritos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Transposases/genética , Transposases/metabolismo
8.
J Clin Microbiol ; 58(3)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31826960

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) is the main cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening clinical complication characterized by hemolytic anemia, thrombocytopenia, and acute renal failure that mainly affects children. A relevant feature of STEC strains is the production of Stx, and all of them express Stx1 and/or Stx2 regardless of the strain serotype. Therefore, Stx detection assays are considered the most suitable methods for the early detection of STEC infections. Single-domain antibodies from camelids (VHHs) exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis. In this work, we have exploited VHH technology for the development of an immunocapture assay for Stx2 detection. Thirteen anti-Stx2 VHHs previously obtained from a variable-domain repertoire library were selected and evaluated in 130 capture-detection pair combinations for Stx detection. Based on this analysis, two VHHs were selected and a double VHH-based biotin-streptavidin capture enzyme-linked immunosorbent assay (ELISA) with spectrophotometric detection was developed and optimized for Stx2 detection. This assay showed an excellent analytical and clinical sensitivity in both STEC culture supernatants and stool samples even higher than the sensitivity of a commercial ELISA. Furthermore, based on the analysis of stool samples, the VHH-based ELISA showed high correlation with stx2 detection by PCR and a commercial rapid membrane-based immunoassay. The intrinsic properties of VHHs (high target affinity and specificity, stability, and ease of expression at high yields in recombinant bacteria) and their optimal performance for Stx detection make them attractive tools for the diagnosis of HUS related to STEC (STEC-HUS).


Assuntos
Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Síndrome Hemolítico-Urêmica/diagnóstico , Toxina Shiga I/isolamento & purificação , Toxina Shiga II/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Anticorpos de Domínio Único/química , Animais , Argentina , Pré-Escolar , Chlorocebus aethiops , Diagnóstico Precoce , Fezes/microbiologia , Humanos , Sensibilidade e Especificidade , Células Vero
9.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182616

RESUMO

The peptidoglycan in Gram-negative bacteria is a dynamic structure in constant remodeling. This dynamism, achieved through synthesis and degradation, is essential because the peptidoglycan is necessary to maintain the structure of the cell but has to have enough plasticity to allow the transport and assembly of macromolecular complexes in the periplasm and outer membrane. In addition, this remodeling has to be coordinated with the division process. Among the multiple mechanisms bacteria have to degrade the peptidoglycan are the lytic transglycosidases, enzymes of the lysozyme family that cleave the glycan chains generating gaps in the mesh structure increasing its permeability. Because these enzymes can act as autolysins, their activity has to be tightly regulated, and one of the mechanisms bacteria have evolved is the synthesis of membrane bound or periplasmic inhibitors. In the present study, we identify a periplasmic lytic transglycosidase inhibitor (PhiA) in Brucella abortus and demonstrate that it inhibits the activity of SagA, a lytic transglycosidase we have previously shown is involved in the assembly of the type IV secretion system. A phiA deletion mutant results in a strain with the incapacity to synthesize a complete lipopolysaccharide but with a higher replication rate than the wild-type parental strain, suggesting a link between peptidoglycan remodeling and speed of multiplication.


Assuntos
Brucella abortus/patogenicidade , N-Acetil-Muramil-L-Alanina Amidase/antagonistas & inibidores , Glicosídeo Hidrolases/fisiologia , Lipopolissacarídeos/biossíntese , Complexos Multienzimáticos/fisiologia , Peptidoglicano/metabolismo , Transferases/fisiologia , Sistemas de Secreção Tipo IV/fisiologia , Virulência
10.
Biotechnol Bioeng ; 116(6): 1427-1438, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739323

RESUMO

In the last decades bacterial glycoengineering emerged as a new field as the result of the ability to transfer the Campylobacter jejuni N- glycosylation machinery into Escherichia coli for the production of recombinant glycoproteins that can be used as antigens for diagnosis, vaccines, and therapeutics. However, the identification of critical parameters implicated in the production process and its optimization to jump to a productive scale is still required. In this study, we developed a dual expression glycosylation vector for the production of the recombinant glycoprotein AcrA-O157, a novel antigen that allows the serodiagnosis of the infection with enterohemorrhagic E. coli O157 in humans. Volumetric productivity was studied in different culture media and found that 2xYP had 6.9-fold higher productivity than the extensively used LB. Subsequently, bioreactor batch and exponential-fed-batch cultures were designed to determine the influence of the specific growth rate (µ) on AcrA-O157 glycosylation efficiency, production kinetics, and specific productivity. At µmax , AcrA glycosylation with O157-polysaccharide and the specific synthesis rate were maximal, constituting the optimal physiological condition for AcrA-O157 production. Our findings should be considered for the design, optimization, and scaling up of AcrA-O157 production and other recombinant glycoproteins attractive for industrial applications.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Glicoproteínas/genética , Glicosilação , Humanos , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Pediatr Nephrol ; 34(4): 631-639, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30367236

RESUMO

BACKGROUND: Providing proof of presence of Shiga toxin-producing E. coli (STEC) infection forms the basis for differentiating STEC-hemolytic uremic syndrome (HUS) and atypical HUS. As the gold standard to diagnose STEC-HUS has limitations, using ELISA to detect serum antibodies against STEC lipopolysaccharides (LPS) has proven additional value. Yet, conventional LPS-ELISA has drawbacks, most importantly presence of cross-reactivity due to the conserved lipid A part of LPS. The newly described glyco-iELISA tackles this issue by using modified LPS that eliminates the lipid A part. Here, the incremental value of glyco-iELISA compared to LPS-ELISA is assessed. METHODS: A retrospective study was performed including all pediatric patients (n = 51) presenting with a clinical pattern of STEC-HUS between 1990 and 2014 in our hospital. Subsequently, the diagnostic value of glyco-iELISA was evaluated in a retrospective nationwide study (n = 264) of patients with thrombotic microangiopathy (TMA). LPS- and glyco-iELISA were performed to detect IgM against STEC serotype O157. Both serological tests were compared with each other and with fecal diagnostics. RESULTS: Glyco-iELISA is highly sensitive and has no cross-reactivity. In the single-center cohort, fecal diagnostics, LPS-ELISA, and glyco-iELISA identified STEC O157 infection in 43%, 65%, and 78% of patients, respectively. Combining glyco-iELISA with fecal diagnostics, STEC infection due to O157 was detected in 89% of patients. In the nationwide cohort, 19 additional patients (8%) were diagnosed with STEC-HUS by glyco-iELISA. CONCLUSION: This study shows that using glyco-iELISA to detect IgM against STEC serotype O157 has clear benefit compared to conventional LPS-ELISA, contributing to optimal diagnostics in STEC-HUS.


Assuntos
Anticorpos Antibacterianos/sangue , Ensaio de Imunoadsorção Enzimática , Infecções por Escherichia coli/diagnóstico , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/diagnóstico , Imunoglobulina M/sangue , Antígenos O/imunologia , Testes Sorológicos , Adulto , Idoso , Biomarcadores/sangue , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/microbiologia , Feminino , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Projetos Piloto , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
12.
J Infect Dis ; 217(8): 1257-1266, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29325043

RESUMO

Brucellaceae are stealthy pathogens with the ability to survive and replicate in the host in the context of a strong immune response. This capacity relies on several virulence factors that are able to modulate the immune system and in their structural components that have low proinflammatory activities. Lipopolysaccharide (LPS), the main component of the outer membrane, is a central virulence factor of Brucella, and it has been well established that it induces a low inflammatory response. We describe here the identification and characterization of a novel periplasmic protein (RomA) conserved in alpha-proteobacteria, which is involved in the homeostasis of the outer membrane. A mutant in this gene showed several phenotypes, such as membrane defects, altered LPS composition, reduced adhesion, and increased virulence and inflammation. We show that RomA is involved in the synthesis of LPS, probably coordinating part of the biosynthetic complex in the periplasm. Its absence alters the normal synthesis of this macromolecule and affects the homeostasis of the outer membrane, resulting in a strain with a hyperinflammatory phenotype. Our results suggest that the proper synthesis of LPS is central to maximize virulence and minimize inflammation.


Assuntos
Proteínas de Bactérias/fisiologia , Brucella/metabolismo , Brucelose/microbiologia , Lipopolissacarídeos/biossíntese , Animais , Brucella/patogenicidade , Gentamicinas , Inflamação/metabolismo , Camundongos , Transporte Proteico , Virulência
13.
Infect Immun ; 86(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30126897

RESUMO

Brucellaceae are a group of pathogenic intracellular bacteria with the ability to modulate the host response, both at the individual cell level and systemically. One of the hallmarks of the virulence process is the capacity of the bacteria to downregulate the adaptive and acquired host immune response through a plethora of virulence factors that directly impact several key signaling cascades. PrpA is one of those virulence factors that alters, via its polyclonal B-cell activity, the humoral and cellular immune responses of the host, ultimately favoring the establishment of a chronic infection. Even though PrpA affects B cells, it directly targets macrophages, triggering a response that ultimately affects B lymphocytes. In the present article we report that PrpA is S-palmitoylated in two N-terminal cysteine residues by the host cell and that this modification is necessary for its biological activity. Our results demonstrate that S-palmitoylation promotes PrpA migration to the host cell plasma membrane and stabilizes the protein during infection. These findings add a new mechanism exploited by this highly evolved pathogen to modulate the host immune response.


Assuntos
Brucella abortus/metabolismo , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Lipoilação , Fosfoproteínas Fosfatases/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Imunossupressores/metabolismo , Macrófagos/microbiologia , Camundongos , Transporte Proteico , Fatores de Virulência/metabolismo
14.
Dig Dis Sci ; 63(6): 1525-1531, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29594967

RESUMO

BACKGROUND/OBJECTIVES: Patients colonized with toxinogenic strains of Clostridium difficile have an increased risk of subsequent infection. Given the potential role of the gut microbiome in increasing the risk of C. difficile colonization, we assessed the diversity and composition of the gut microbiota among long-term care facility (LTCF) residents with advanced dementia colonized with C. difficile. DESIGN: Retrospective analysis of rectal samples collected during a prospective observational study. SETTING: Thirty-five nursing homes in Boston, Massachusetts. PARTICIPANTS: Eighty-seven LTCF residents with advanced dementia. MEASUREMENTS: Operational taxonomic units were identified using 16S rRNA sequencing. Samples positive for C. difficile were matched to negative controls in a 1:3 ratio and assessed for differences in alpha diversity, beta diversity, and differentially abundant features. RESULTS: Clostridium difficile sequence variants were identified among 7/87 (8.04%) residents. No patient had evidence of C. difficile infection. Demographic characteristics and antimicrobial exposure were similar between the seven cases and 21 controls. The overall biodiversity among cases and controls was reduced with a median Shannon index of 3.2 (interquartile range 2.7-3.9), with no statistically significant differences between groups. The bacterial community structure was significantly different among residents with C. difficile colonization versus those without and included a predominance of Akkermansia spp., Dermabacter spp., Romboutsia spp., Meiothermus spp., Peptoclostridium spp., and Ruminococcaceae UGC 009. CONCLUSION: LTCF residents with advanced dementia have substantial dysbiosis of their gut microbiome. Specific taxa characterized C. difficile colonization status.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/microbiologia , Demência/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Instituição de Longa Permanência para Idosos , Casas de Saúde , Boston , Clostridioides difficile/genética , Infecções por Clostridium/diagnóstico , DNA Bacteriano/genética , Demência/diagnóstico , Disbiose , Humanos , Estudos Retrospectivos , Ribotipagem
15.
J Biol Chem ; 291(23): 12383-93, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27059960

RESUMO

The VirB secretion apparatus in Brucella belongs to the type IV secretion systems present in many pathogenic bacteria and is absolutely necessary for the efficient evasion of the Brucella-containing vacuole from the phagocytic route in professional phagocytes. This system is responsible for the secretion of a plethora of effector proteins that alter the biology of the host cell and promote the intracellular replication process. Although many VirB substrates have been identified in Brucella, we still know very little about the secretion mechanism that mediates their translocation across the two membranes and the periplasmic space. In this manuscript, we describe the identification of a gene, virJ, that codes for a protein with periplasmic localization that is involved in the intracellular replication process and virulence in mice. Our analysis revealed that this protein is necessary for the secretion of at least two VirB substrates that have a periplasmic intermediate and that it directly interacts with them. We additionally show that VirJ also associates with the apparatus per se and that its absence affects the assembly of the complex. We hypothesize that VirJ is part of a secretion platform composed of the translocon and several secretion substrates and that it probably coordinates the proper assembly of this macromolecular complex.


Assuntos
Proteínas de Bactérias/metabolismo , Periplasma/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/patogenicidade , Brucelose/virologia , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Ligação Proteica , Sistemas de Secreção Tipo IV/genética , Virulência , Fatores de Virulência/genética
16.
Cell Microbiol ; 18(4): 500-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26400021

RESUMO

Adhesion to cells is the initial step in the infectious cycle of basically all pathogenic bacteria, and to do so, microorganisms have evolved surface molecules that target different cellular receptors. Brucella is an intracellular pathogen that infects a wide range of mammals whose virulence is completely dependent on the capacity to replicate in phagocytes. Although much has been done to elucidate how Brucella multiplies in macrophages, we still do not understand how bacteria invade epithelial cells to perform a replicative cycle or what adhesion molecules are involved in the process. We report the identification in Brucella abortus of a novel adhesin that harbours a bacterial immunoglobulin-like domain and demonstrate that this protein is involved in the adhesion to polarized epithelial cells such as the Caco-2 and Madin-Darby canine kidney models targeting the bacteria to the cell-cell interaction membrane. While deletion of the gene significantly reduced adhesion, over-expression dramatically increased it. Addition of the recombinant protein to cells induced cytoskeleton rearrangements and showed that this adhesin targets proteins of the cell-cell interaction membrane in confluent cultures.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Brucella abortus/fisiologia , Células Epiteliais/microbiologia , Animais , Brucella abortus/metabolismo , Células CACO-2 , Cães , Deleção de Genes , Expressão Gênica , Humanos , Células Madin Darby de Rim Canino
17.
J Clin Microbiol ; 54(6): 1448-1455, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26984975

RESUMO

Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Brucella/imunologia , Brucelose/diagnóstico , Testes Sorológicos/métodos , Doenças dos Suínos/diagnóstico , Animais , Antígenos de Bactérias/genética , Feminino , Masculino , Curva ROC , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Suínos
18.
J Clin Microbiol ; 53(2): 528-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25472487

RESUMO

Human infection with Shiga toxin-producing Escherichia coli (STEC) is a major cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening condition characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. E. coli O157:H7 is the dominant STEC serotype associated with HUS worldwide, although non-O157 STEC serogroups can cause a similar disease. The detection of anti-O157 E. coli lipopolysaccharide (LPS) antibodies in combination with stool culture and detection of free fecal Shiga toxin considerably improves the diagnosis of STEC infections. In the present study, we exploited a bacterial glycoengineering technology to develop recombinant glycoproteins consisting of the O157, O145, or O121 polysaccharide attached to a carrier protein as serogroup-specific antigens for the serological diagnosis of STEC-associated HUS. Our results demonstrate that using these antigens in indirect ELISAs (glyco-iELISAs), it is possible to clearly discriminate between STEC O157-, O145-, and O121-infected patients and healthy children, as well as to confirm the diagnosis in HUS patients for whom the classical diagnostic procedures failed. Interestingly, a specific IgM response was detected in almost all the analyzed samples, indicating that it is possible to detect the infection in the early stages of the disease. Additionally, in all the culture-positive HUS patients, the serotype identified by glyco-iELISAs was in accordance with the serotype of the isolated strain, indicating that these antigens are valuable not only for diagnosing HUS caused by the O157, O145, and O121 serogroups but also for serotyping and guiding the subsequent steps to confirm diagnosis.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Glicoproteínas/imunologia , Síndrome Hemolítico-Urêmica/diagnóstico , Sorotipagem/métodos , Escherichia coli Shiga Toxigênica/imunologia , Antígenos de Bactérias/genética , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas/genética , Humanos , Imunoglobulina M/sangue , Lactente , Recém-Nascido , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Estudos Retrospectivos , Método Simples-Cego
19.
Cell Microbiol ; 16(3): 396-410, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24119283

RESUMO

Brucella abortus, the aetiological agent of bovine brucellosis, is an intracellular pathogen whose virulence is completely dependent on a type IV secretion system. This secretion system translocates effector proteins into the host cell to modulate the intracellular fate of the bacterium in order to establish a secure niche were it actively replicates. Although much has been done in understanding how this secretion system participates in the virulence process, few effector proteins have been identified to date. We describe here the identification of a type IV secretion substrate (SepA) that is only present in Brucella spp. and has no detectable homology to known proteins. This protein is secreted in a virB-dependent manner in a two-step process involving a periplasmic intermediate and secretion is necessary for its function. The deletion mutant showed a defect in the early stages of intracellular replication in professional and non-professional phagocytes although it invades the cells more efficiently than the wild-type parental strain. Our results indicate that, even though the mutant was more invasive, it had a defect in excluding the lysosomal marker Lamp-1 and was inactivated more efficiently during the early phases of the intracellular life cycle.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/patogenicidade , Animais , Sistemas de Secreção Bacterianos , Brucella abortus/genética , Brucelose/microbiologia , Brucelose/patologia , Linhagem Celular , Feminino , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana Lisossomal , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Virulência/metabolismo
20.
J Biol Chem ; 288(28): 20208-16, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23720774

RESUMO

Brucella spp. and Trypanosoma cruzi are two intracellular pathogens that have no evolutionary common origins but share a similar lifestyle as they establish chronic infections for which they have to circumvent the host immune response. Both pathogens have a virulence factor (prpA in Brucella and tcPrac in T. cruzi) that induces B-cell proliferation and promotes the establishment of the chronic phase of the infectious process. We show here that, even though PrpA promotes B-cell proliferation, it targets macrophages in vitro and is translocated to the cytoplasm during the intracellular replication phase. We observed that PrpA-treated macrophages induce the secretion of a soluble factor responsible for B-cell proliferation and identified nonmuscular myosin IIA (NMM-IIA) as a receptor required for binding and function of this virulence factor. Finally, we show that the Trypanosoma cruzi homologue of PrpA also targets macrophages to induce B-cell proliferation through the same receptor, indicating that this virulence strategy is conserved between a bacterial and a protozoan pathogen.


Assuntos
Linfócitos B/imunologia , Proteínas de Bactérias/imunologia , Proliferação de Células , Macrófagos/imunologia , Fatores de Virulência/imunologia , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/imunologia , Isomerases de Aminoácido/metabolismo , Animais , Linfócitos B/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Brucella abortus/imunologia , Brucella abortus/metabolismo , Brucella abortus/patogenicidade , Linhagem Celular , Células Cultivadas , Feminino , Macrófagos/parasitologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Miosina não Muscular Tipo IIA/imunologia , Miosina não Muscular Tipo IIA/metabolismo , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Baço/citologia , Baço/imunologia , Baço/metabolismo , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Virulência/imunologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA